Graph-based Pattern Discovery from Software Architecture
Change Logs

Aakash Ahmad, Pooyan Jamshidi, Claus Pahl
Lero - the Irish Software Enginneering Research Centre
School of Computing, Dublin City University, Ireland
[ahmad.aakasH|pooyan.jamshidi|claus.pahl]@computing.dcu.ie

Abstract: Modern software systems are subject to a continuous evolution uedgeintly vary-
ing requirements and changes in operational environments. Lehtaantf continuing change
demands for long-living and continuously evolving software to prologgséem’s productive life
and economic value with frequent change implementation. We investigaigeature change
logs - performing a post-mortem analysis of architectural evolution lgsteto discover change
patterns that support (a) reusability of architectural changes amhfiance the efficiency of the
architecture evolution process. We formalise the change log data gsteagrd provide the algo-
rithms that utilise sub-graph mining techniques to discover the sequehesiaring change as
patterns. The primary contribution of this research is an automated digcand template-based
specification of architecture change patterns from logs. The analysigmafie logs have resulted
in the discovery of 7 new change patterns and some pattern variant@dtdmented the patterns
and applied them to evolve a peer-to-peer system to a client-server etatétérhe proposed al-
gorithms promote pattern discovery as a continuous process and@eofedndation to develop
a collection of change patterns that grows overtime with newly discovexierps.

Key Words: Software Architecture, Software Evolution, Evolution Patterns, Repgditaring.
Category: D.2.10 - Design, D.2.11 - Software Architectures, M.8 - Knowledgese.

1 Introduction

Modern software systems continuously evolve as a consequenagagfit changes in business
and technical requirements and their operating environmelts [1,2inae’s law of 'continuing
change’[3] states thdt. . systems must be continually adapted or they become progreskassly
satisfactory”. The primary challenges associated to supporting a continuous chen@:4 (a)
acquisition and application of reusable solutions to address recurringtiemoproblems and
(b) selection of an appropriate abstraction for software change imptati@n. To address the
challenges above, we propose that the acquisition of reusable solutiatiscavered change
patterns([5] promotes reuse and efficiency in architecture-centtiwaef evolution (ACSE) [6].

Software architecture models proved successful in representigneodules and their intercon-
nections as high-level components and connectors that facilitate thesigreatyl implementation
of software design and evolution at higher abstraction leveld [7, 8].spstematic reviews of
research on ACSE [B] 9] suggests that solutions that tackle recuwrgigtien problems must
rely on a continuous discovery of evolution-centric knowledge that earebised to guide archi-
tecture change management. Some industrial research also dertesntted reuse knowledge
saves up to 40% of the effort for architecture evolution compared toddmoa and once-off
implementation of recurring architectural changes [10][In [9] wengefiarchitecture evolution
reuse knowledge ds collection and integrated representation (problem-solution map) ofana
Iytically discovered, generic and repeatable change implementationtésgpéirat can be shared
and reused as a solution to frequent (architecture) evolution problems”

Evolution styles[[¥, 11] and change patterins| [12] promote the applicati®guse knowledge in

architecture evolution process. However, there is a lack of researtiecacquisition of reuse
knowledge that involves a continuous discovery of new styles and pattaeroontrast to the ex-
isting research on pattern application [7, 12], there is a need for solutiahsupport empirical

discovery of patterns by investigating pattern sources. In this rese@rahify the concepts of (a)
software repository mininfiL3,14] and (b)software evolutiorfl1li2] to discover and apply archi-
tecture change patterns. First, we apply repository mining techniqueshiteature change logs
to discover recurring changes as patterns and document them usieghgamplates. Second,
we utilise software evolution concepts and apply the discovered patterappors architectural

evolution. We hypothesise that:

a continuous experimental investigation of architecture change logdentie discovery of
architecture change patterns that can be shared and reused (to g@d®aBE process).

Research Challenges and Solution Overview based on the hypothesis above, the primary
challenges for this research include (a) an automdiscbveryof architecture change patterns
by mining change logs, (b) a template-basgetcificationof the discovered patterns, and (c)
applicationof these patterns to support reuse of architecture evolution. Congjgethitecture
change analysis in [155,116], in addition to automation; user interventionasedgiired - human-
centric feedback and supervision - for the pattern discovery protes&ldress these challenges,
we provide the solution as a 3-step process that enables the disc@emijication and applica-
tion of architecture change patterns. In step 1 we capture structubéiemtaral changes - from
architecture evolution case studies - in logs and formalise the changetibgsda graph. In this
research, we only focus on changes that evolve architectural seyethile the analysis of be-
havioural changes represents a possible dimension of futureecks€ace log data is formalised
as a graph, in step 2 we apply sub-graph mining [17] techniques to ideetifyring architec-
tural changes as patterns. Finally, in step 3 a template-based change ga¢iification allows
us to document individual patterns and enables their reuse wheneveeels for pattern usage
arises|[18].

Research Contributions - a case-study based demonstration highlights the applicability of the
discovered patterns to guide architecture change management. Imthgtad existing solutions
for pattern([[12] and style-driven|[7] evolution, the primary contributidrthis research is:

- Exploiting architecture change logs as a source of evolution-centriwlkdge that enable
post-mortem analysis of architecture evolution histories for automateovaiigcof reusable
change patterns.

- Atemplate-based specification provides a formal documentation foodised patterns and
builds-up the foundation for a collection of architecture change patterns.

- In contrast to the ad hoc and once-off implementation of architectheaiges, change pat-
terns increase reusability for frequent change implementation ansiemkize efficiency of
the architectural evolution process.

This paper provides a significant extension to our previous reséajrahd provides: (a) Automa-
tion of pattern discovery with algorithms, (b) Documentation of discovegdterns to enhance
their reusability and (c) Validation of the discovered patterns with a casg.sthe scalabil-
ity of pattern-discovery process beyond manual analysis is suppeitied prototypeG-Pride
(Graph-based Pattern Identification) that enables automation andegiesmu user intervention
for pattern mining from logs.

The remainder of this paper is organised as follows. We discuss thedredestearch in Section
and present a meta-model for pattern-based architecture evoluatiior 8. We present the
types of change log data and its formalisation as a graph in Sé&dtion 4. fiorgBcwe present
the algorithms for change pattern discovery and discuss a template-pattern specification
in Section[6. We evaluate the applicability and the impact of change patteraschitecture
evolution in Sectiof]7. Finally, we present the conclusions and futurangse Sectiofil8.

2 Related Work

To justify the proposed contribution(s), we provide an overview of thstieg - academic and
industrial - research on pattern discovery and pattern application.iStwsdion is guided by our
systematic review on pattern-based reuse of architecture evolutiovgdnalyse and compare:

- the state of academic research on pattern discovery (Séciibn 2.})attedn application
(Sectior Z.P) in the context of proposed solution, and

- the relevance of the proposed solution to existing industrial studies (8BC8»on change
reusability in architecture evolution process.

2.1 Change Pattern Discovery

Based on a systematic classification and comparison on existing resed4ci8,[S], solutions
for discovery of architecture change patterns are not well establidte@ specifically, the only
notable work is on the identification of architectural change patterns flgetboriented soft-
ware [19]. In contrast to the pattern identification by analysiogrce codes changes[19,20],
our solution discovers patterns by mining the historahitecture evolutiomsing change logs.
Our solution is also able to discover patterns and pattern variants that isldresaed in [19].
We propose that the discovered patterns could only be reused if thdg@rmented or specified
using a pattern template. The novelty of our solution is a 3-step procepattern-based archi-
tecture evolution. We promote patterns as generic and reusable solutibnarttbe (a)dentified
as recurrentcan be (bppecified oncand (c)instantiated multiple time® support change reuse
in ACSE.

Graph-based Pattern DiscoveryWe discuss the most relevant graph mining approaches to sup-
port change pattern discovery - an approach fundamental to ourrpdiseovery solution. The
concept of discovering sequential patterns was first presented]ir§ibge then, there is a grow-

ing development of algorithms and mathematical solutions for mining s¢iglipatterns across
different domaind[21, 22]. Specifically, the solution to our pattern ideatifin problem are Fre-
quent Sub-graph Mining (FSM) techniques][17]. In our solution, westlexploited the concept of
sequential pattern minin@ [1L5] by using the sub-graph mining technidifdsd develop pattern
discovery algorithms. These algorithms automate the pattern discowaygs:

2.2 Change Pattern Application

In contrast to pattern discovery (in Sectfonl2.1), the research onmpaelication for architec-
tural evolution is better established. More specifically, in recent yearertieegence of change
patterns|[12] and evolution styles|[7)/11] promoted solutions that candgeeeuse knowledge
and expertiseto tackle recurring problems in architecture evolution. Both the changerpatte
and evolution styles although conceptually innovative, they build-upon thre onventional
philosophy behind design patterns|[24] and architectural styleés [25]dreas evolution-centric
issues in software architectures.

Change patternsfollow the reuse methods and techniques to offer a generic solution tasfineq
evolution problems. Pattern-based solutions enabteective adaptivend perfectivechanges
(as per ISO/IEC change taxonomy [4]) to support both design-timesfisas/runtime evolution.
In contrast to change patterreyolution stylesfocus on defining, classifying, representing and

LIn the architecture knowledgf3] community the terms knowledge and expertise represent
the empirically discovered solutions that can be shared and reusedotarstie development
and evolution of software architecturés [9].

reusing frequent evolution plans. Style-based approaches are limigttitessing theorrec-
tive and perfectivechanges implemented as design-time evolution and do not supportvadapti
changes that implement runtime evolution.

In [8,19], we reported that change patterns and evolution styles prampplécation of evolution
reuse knowledge in ACSE processes. However, there is a clear laekesirch on acquisition
of evolution reuse knowledge that involves a continuous discoverywfatges and patterns.
Therefore, in contrast to existing work on reusable pattern and styleatpn [4,11/12], we
propose that patterns must be (empirically) discovered by (systethaticaestigating pattern
sources[[26]. To enhance or enable reusable change managiém®ents a growing need for
solutions that facilitate a continuous discovery of reuse knowledge astheworks and patterns
by investigating evolution histories [1.3.]27] that is the focus of this rebearc

2.3 Industrial Research on Implications of Reuse on Architeture Evolution

The industrial research can be divided into (a) reusable adaptatios aheh(b) survey-based
analysis of evolution reuse. In [110], the authors support reuseaytation policies to support
dynamic adaptation of the architecture for an industrial system called Qafaigition and Con-
trol Service (DCAS). DCAS system is used to monitor and manage higlplylated networks of
devices in renewable energy production plants. The research deateashat reuse of recurring
adaptation strategies and policies saves about 40% of the effort futeatare evolution com-
pared to an ad hoc and once-off implementation of adaptive chdn@edbther research [28],
the authors analysed change requests from four different relebadearge telecom system archi-
tecture developed by Ericsson over a three-year period. The cedaghlights that change reuse
has resulted in (a) aimcreased maintainabilitgvaluated in cost of implementing architectural
change scenarios, (linproved testability (c) easier upgradesand also (d)jncreased perfor-
mance The impact of software reuse, especially exploiting COTS (Commetdfal he-Shelf)
components is essential to enhance reuse of architectural compandritseir evolution.

Survey-based Studyln an interesting study (The Architect’'s Mind-sdt) [29] the authors per-
formed a survey-based analysis in the industry. The authors collestdbddck on the importance
of architectural knowledge that can be shared and reused to desigstiod and evolve software
architectures. Based on the results of the feedback, the study refleesctitect’s mind-set on
architectural knowledge. It concludes that:

... an increase in the efficiency of the architecture evolution procegsres increased (initial)
effort to integrate reuse knowledge and expertise (empirically discdareé systematically doc-
umented solution) in the process. However, the reuse knowledge perdiss has a direct impact
on reduced cost and time to implement changes during future softwdrdiexo

Our research can be compared to the work ir [10], and we providearimental discovery
of patterns to support reuse of future changes. However, ousndses only focused on design-
time evolution of software architectures. The primary focus of ourarebes to automate pattern
discovery and validate pattern reusability.

3 A Meta-model of Pattern-based Architecture Evolution

In software architecture change lo¢is|[30], we observed that artlmiééchanges can be op-
erationalised and parametrised to support architecture evolution. Mecdisally, architecture
elements that are added, removed, or modified are specified asgtarsiof change operations.
The recurring architectural changes represent a change pattéargaseric, first class abstrac-
tion to support potentially reusable architectural change operationalisétiéntypical example

of a change pattern is the replacement of a legacy compdintith a new component2
represented aBeplace (C1, C2). In Figure[1, the meta-model for pattern-based architecture

evolution provides the structural composition of a change pattern an@téenships that ex-
ist between pattern elements. For example, the relationship among twoelethents (change
pattern and change operators) represents that a change patterp@sedrf change operations.
The existing architectural description languagdes [31] do not suppoeixglicit change imple-
mentation on architectural model (components and connectors dte. proposed meta-model
incorporates the architecture model and also provides change opsratidhis model to evolve
architectural descriptions. To enable pattern discovery and pattegttaachitectural evolution,
we must specify the individual elements of the meta-model from F[ga=elow.

1 Specifying the Architecture Model (ARCH) - the architecture model is composed of the
architecture elements to which a pattern can be applied during changgiere¥Ve repre-
sent the architecture model as topological configurati@#3) based on a set of architec-
tural components§MP) as the computational entities, linked through connectoeN) [7].
Furthermore, architectural components are composed of comioores POR), while con-
nectors are composed of endpoir&{T) to bind component ports. Therefore, consistency
of pattern-based change and structural integrity of architecture eteilneyond component-
based (also service component) architecture model is undefinedirthlerfdiscuss the ar-
chitecture model and its evolution in Sectidn 4.

Change patterns in this paper address component-based softwereegimg in general and
existing research on component-based software architecture anevbkition [7[11] in

particular. We believe that architecture descriptions in a meta-model €axtended to
model more conventional object-oriented architecture$ [19]; howeaie possibility can

only be seen as a future work.

PatternCollection : COL

in(ChangePattern: PAT)
out() ChangePattern:PAT

isContainedBy | 1..*
ChangePattern : PAT

isConstrainedBy

isApplieTo

Constraints : CNS -id : Integer ArchitectureModel : ARCH

-name : String

1.1

-intent : String

Configuration

isComposedof | 1. | Component || Connector |

target
source
OperatorType OperatorComposition
5

|Add(arch:ARCH)| |Rem(arcn- ARCH)H Atomic Change "Composllechangel

Mod(arch: ARCH)
Co Relation i Relation
Patts El t
[attern Elemen A]

ChangeOperators : OPR

Figure 1: A Meta-model Representation for Pattern-based Architedavolution.

2 Specifying the Change Operators (OPR) - the change operators represent change in-
stances that are fundamental to operationalising architectural evol@isranalysis of the
change log[[30, 32] goes beyond basic change types that adddiseraADD), removal
(REM), and modificationIOD) of elements in architecture models [11] 33]. More specifi-
cally, first we distinguish between atomic and composite operations anihtrestigate the

sequential composition of composite operations to discover recurriugesees as change
patterns. Architectural composition during change operationalisatioe$epred with:

- Atomic Change Operationshese enable fundamental changes in terms of adding, re-
moving, or modifying the component porB@QR and connector endpointEPT). For
example, an addition of a new p&tin an existing componen is expressed as follows
(€ represents type of element).

Add(P € POR,C € CMP).

- Composite Change Operatiorhiese are sequential collections of atomic change op-
erations, combined to enable composite architectural changes. Tihalsie adding,
removing, or modifying architectural configuratiorSKG) with components QMP)
containing ports, connector€QN) containing endpoints (for component port bind-
ing). For example, addition of a new componénwith a portP in a configuratiorG is
specified as follows< represents operational sequence).

Add(C € CMP,G € CFG) < Add(P € POR,C € CMP)

Components are the first class elements (computation and data storef)itécure model.

Therefore changes to connectors are consequential, i.e., cormantoonly added or re-
moved as a consequence of the addition or removal of componergag€loperators rep-
resent primitive changesl[7] that are composed into pattern-basedjebl[3D]. Operators
abstract addition, removal, and modification of components and ctorego support the

frequent composition, decomposition, and replacement of architeekeiments in the archi-
tecture. We further discuss change operations on the architecture imSgetior 4.

Specifying the Constraints on Change Operations (CNS) -the constraints refer to a
set of pattern-specific conditions in terms of pre-conditidPRE - the conditions before
application of a pattern) and post-conditiof®ST - the conditions after application of

a pattern) to ensure the consistency of pattern-based changes.itiopradtie invariants
(INV - the conditions satisfied during application of a pattern) ensuretstraidntegrity of
individual architecture elements during change execution. For exathpieg addition of a
component, the preconditions ensure that a compor@uipes not exist in a configuration
G, and the postconditions ensure that a compo@epbntaining a porP is successfully
added to a configuratio®. We further discuss the constraints during architecture evolution
in Sectior{ 4.

Specifying the Change Patterns (PAT) - a change pattern defines a first-class abstrac-
tion that can be operationalised and parametrised to support potentiaBbtelarchitec-
tural change execution. A pattern hasaneand anintentthat represents a recurring, con-
strained (CNS) composition of change operationalisation (OPR) on astthiteelements
(aem € ARCH) - in Figured. We further discuss pattern discovery in Se¢fion 6 and patter
application in Sectioh]7.

A Collection of Architecture Change Patterns (COL) - the pattern collection is a repos-
itory infrastructure that facilitates an automasdrage(in: once-off specification) angk-
trieval (out: multiple instantiation) of discovered change patterns. It also stgppattern
classification for a logical grouping of related patterns based on the tfpmzhitectural
changes they support. Pattern specification is detailed in S&¢tion 6.

The background details about pattern discovery and representatibfears to present the
change log data (in Secti@h 4) and pattern discovery from logs (in S&dtion 5

4 Graph-based Modelling of the Architecture Change Log Data

To exploit the sub-graph mining approaches for frequent pattern gifrom logs, we model the
log data as a graph. In this section we explain (a) what arsdheceandtypesof change log
data (in Sectiof4]11) and (b) how log datdasmalised as a grapkin Sectiorf4.P).

4.1 The Source and Types of Change Log Data

In the context of software repository mining resealch [13], an arctoite change log refers tan
explicit source of evolution-centric knowledge that maintains and preadequential collection
of architecture change history that has been aggregating over [2@&33]. We define a change
log as follows:

Definition 1. Architecture Change Log- Let OPR represent an individual change operation,
an architecture change log (ACL) is a sequential collection of changatipes expressed as a
tuple ACL =< OPRy < OPR2 < OPRnN >.

< represents a sequencing operation between change opera&iBiig (o O P Ry). The change
operations represent a sequential collection of architectural chéfhdésRemove, and Modify)
on elements of architecture model (components, connectors, afigwations) (cf. Figur&ll).

4.1.1 Evolution Case Studies as the Source of Change Log Data

The source of the change log data refers to the architectural evoluserstalies [34, 35] with all
individual architectural changes captured in the log. In this reseaelassume that the change
logs evolve over time with acquisition of new evolution-centric data from difiesources.

Capturing Architectural Changes in the Liggan automated process that is enabled by preserv-
ing individual changes in the log as illustrated in Figure 2. This means, evieeran individual
change was applied to the architecture elements it was captured in the lmgmpéement a con-
tinuous pattern discovery the algorithms can automate log mining whernewetata is available.
Currently, we analyse architectural evolution cases of an a) ElectrdhRrBsentment and Pay-
ment System (EBPP) [34] and b) 3-in-1 Phone sysiern [35]. To emabkerimental investigation

of change history, architectural evolution of two different systemsiges us with an adequate
amount of data for pattern discovry for space reason only the EBPP case study is used as
running example in this paper. The adequacy of the log data is definéa) gsanularity of the
architectural change instancgise., atomic and composite changes, cf. Sedfion 3), antbth)
number of changefr pattern discovery (thousands of individual changes). We ptespartial
architectural view for the EBPP case study in Figure 2a and explain dotievoscenario to
capture architectural change instafidesthe logs - Figur€l2b. We utilise the Architecture Level
Modifiability Analysis (ALMA) [37] for evolution scenario elicitation and analg of EBPP ar-
chitecture evolution. We follow the ALMA methodology with a three step predesselection
evaluationandinterpretationof the evolution scenario.

2 Each individual architectural change from the case studies is captimedhe
log file as the basis for pattern discovery from change logs providecke: her
ht t p: // ahnadaakash. w x. com aakash#! changel ogdat a/ c22j u

3 In literature the termarchitecture change instanceandarchitecture change operationare
often used interchangeably |30.36]. For example a change instaatadtlis a component
C can be operationally expressed Add(C € CMP). Operationalising an instance explicitly
provides a name (Add) and parameters (architecture elemleas Type) for a change instance.

http://ahmadaakash.wix.com/aakash##!changelogdata/c22ju

<<Atomic>>

PaymentType

Architecture
Evolution

BillerCRM

getpill select]ype

aylrvoice
payl 1 makel Iaymenl CustPayment BillerCRM

<<Composite>> i

—_—
L custPayment -) Change Data =

oprli= Add(Paymen(TypﬁDCMP, PaymemDCEG)
. q weekPayment opr2:=Add(PayBill("in")_JPOR, PaymentType [JCMP)
custinvoice Y opr3:=Add(SendBill("out") LJPOR, PaymentTypel_lcmp)
_ opr4:=Remove(makePayment[JCON, Payment LICFG)
. _ oprn:=

L] monthPayment

finvoicePay
| I B L Auxiliary Data

- userlD := aakash_ADM1
- changelD := 257
- changeDateTime := 2012-02-17::10:37:52

Port Connector -
- changelntent := to integrate a component inebpp
Component o= N S — - systemID:= ebpp.
out in infout e.Src e.Trg

a) Partial View of EBPP Architecture (before Evolution) b) Capturing Architectural Changes in ACL

Figure 2: a) Partial Architectural View for EBPP and b) Change Insésnio ACL

Step 1. Scenario Selection - Integration of Architectural Componéstthe first step, scenario se-
lection aims at selecting all (or a subset of) architectural changersoefiar scenario-based
analysis of architecture evolution. As an example, we present the evosdimario of com-
ponent integration in the EBPP case study. The scenario demonstrates ttiea existing
functional scope of the case study (Figllte 2a), the company chitssgasstomer with full
payment of customer bills prior to delivering the requested services, tie company plans
to facilitate existing customers with either direct debit or the credit-basecgatg of their
bills. In Figure[2b, this evolution scenario is representedriasgration of a mediator com-
ponentPaymentType that facilitates the selection of a payment type (direct deloiit, pagy-
ment) mechanism among the directly connected compoBéleisCRM andCustPayment

Step 2. Scenario Evaluation - Analysing Architectural Changes for Compon@sgiation After
the scenario was selected, in this step we are interested in analysing titecamcal change
operations applied to architecture elements to evaluate and execute thecsdeor exam-
ple, in the case of component integration, existing EBPP architecture iiedodith addi-
tion of new componentBaymentType (and corresponding ports) and two connegetiill
andselectType to mediate the customer billing and payments in Figure 2b. Thigsresu
recording individual change operations in the log (change data) alithghe intent, time
and effects of change (auxiliary data) in Figlite 2b.

Step 3. Results Interpretation - Impacts of Changes on Architecture Mo&féér evaluation and
execution, as the final step we interpret the results of a given evolumaso based on the
impact of changes on existing architecture. The results interpretatioisésl lmen analysing
source architecture (as preconditions of evolution) Fifilire 2a, theyermrerations applied
on source architecture to achieve the evolved architecture (as paticos of evolution)
Figure2b.

4.1.2 Types of Data in a Change Log
Once change instances are recorded in the log, change log data isedessifnange Data (CD)
andAuxiliary Data (AD)as represented in Figuré 2b.

- Change Data (CD)contains the core information about individual change instances-or op
erations in the log. This is expressed@® = (Changel D, OPR, ARC H) representing

changeid(opr1, opra, . .., opry) along with change operations on architecture elements.
For example in Figurgl2b, change data represents the changejd;at® add a new com-
ponentPaymentType inside thBayment configuration.

- Auxiliary Data (AD) provides the additional details about individual change instances in the
log, representing the time, user, intent of changes. The auxiliary datprisssed asdD =
(UserID, TimeStamp, Changelntent, SytemID) that is captured automatically and
consists of user idAakash-ADM1), date-time {0:37:52/17/02/2012), intent of change
(to integrate a component in ebpp) and the system identélgr) to which the change is
performed in FigurEl2b. Auxiliary data is particularly useful for arcHiteal change analysis
based on the source, intent, time of change and facilitates in extractinicsftgne/user-
based etc.) architecture change sessions from logs.

4.2 Creating the Change Log Graph

In this section we focus on formalising change instances from log as @ttt graph (AG)
with nodes and edges typed over an attributed typed graph (ATG) [@8s®note that an ATG in
Figure[3 represents a meta-graph to model change log data as an A€pttesients an instance-
graph in Figur€®. An inherent benefit with graph-based modelling ofidg lies with exploita-
tion of sub-graph mining - a formalised graph mining technique - whaesasring sub-graphs
in the log graph can be discovered as frequent change patterns.

Attributed Type Graph

-userlD : String
-changelD : String
- Intent : String

- SystemlID : String

hasEdge | 1..* - TimeStamp : DateTime 1.* | hasNode
- source 1
Attributed Edge Attributed Node
I target T
Graph Edge
P 9 Change Operators Architecture Model

Node Attribute Edge Edge Attribute Edge

[Composition Generalisation Association j

Figure 3: Attributed Typed Graph Model to Formalise Architecture @fp@a Log Data

Definition 2. Architecture Change Log Graph - A collection of change operations (cf. Figure
[@)) from log (cf. Definitiori 1) are expressed as a change log giaph, = (N¢, Na, Eg, En,, FE,)

— Graph Nodesrepresent change operations on architecture made):Na € Nodes,

— Graph Edgesrepresents a sequencing of the operations as adjacent #@geBSy , , Er, €
FEdges.

The attributed graph morphisid from an instance grapAG (Figurel3) to its meta-grapAT G
(Figure[4) is expressed dd : AG — ATG. A collection of change operations in the log are
expressed as an attributed change log gdpb .. in Figure[3 - nodes and edges defined as:

1. Graph Nodes: N = (n}|i = 1,...,m) represents a set of graph nodes. Each graph node
(ng € Ng) represents a single change log entry (i.e., a single change operdtienge-
quencei = 1,...,m refers to the total number of change operations that exist in the log.
We assume concurrent or commutative change operations (if any ioghare represented
as a sequence, where each of the change operations is executdtbptieather (i.e. se-
guenced change lod)I[5.130].

2. Attribute Nodes: Ny = <n§\i =1,..., m> represents a set of attribute nodes for graph
nodes (V¢). Attribute nodes are of two types, a) attribute nodes that represeittaayx
data (e.g., userlD, changelD, TimeStamp etc.) and b) attribute nbdesepresent change
data and its subtypes (e.g., operation type, architecture model). Ghersej = 1,....m
refers to the total number of attribute nodes in a change log graph.

3. Graph Edges: Eg = <n;|z' =1,...,m— 1> represents a set of graph edges that connects
two graph node#V. The graph edgee{ € E¢) represent the applied sequence of change
operations@PR) applied to the architecture mod@RCH). The sequende=1,...,m—1
represents total graph edges in a log graph.

4. Node Attribute Edges: En, = (e,.]i =1,...,p) represents the set of node attribute
edges that join an attribute node,(€ N4) to a graph noder{; € Ng). The sequence
i =1,...,prefers to the total number of node attribute edges in change log graph.

5. Edge Attribute Edges: Eg, = (el,|i =1,...,q) is the set of edge attribute edges that
join an attribute noder{, € N,) to an attributed edgez{.). The sequencé=1,...,q
refers to the total number of edge attribute edges in a change graph.

a) Change Instance as Represented in the Change Log

ChangelD = 264
Add an Endpoint
ChangelD=257 | ettt
Add a Component PaymentType |sendginQ-3&E1 | custPayment
ChangelD = 258 ChangelD = 263
Add a Port Add a Connector
_—
e
End of Change
Start of Change Sequential Collection of Change Instances | ———— orohang
aakash_ADM1
userlD
757 Tro.2012: 10975 (258) (27-02-2012::10:39:13 263) (17-022012::10:40:08 26a) (17-02-2012:10:41:35
ChangelD TimeStamp ChangelD TimeStamp ChangelD TimeStamp ChangelD TimeStamp
rik L L)
Add() |l Add() | Ll | ——— Add()
ord ordRt T order order order
1 —> (1 >(2 (1
hasParameter haspivametev hasParameter — hasParameter hasParameter
PaymentType [sendBill [getBill] [PayrnemType. cus(Paymenl] [ge[paymem]
T
has;ype hasType has;ype hasType hasType
cmP [coN [cup] [il]

Auniliary Data Change Data Change Sequence Change Composition

b) Change Instance Represented as a Session Graph

Figure 4: Change Instances as an Attributed Graph (typed over ATGguarEi3).

4.3 Mapping the Change Log Data to Change Log Graph

After presenting the change log data (Secfion 4.1) and the change lplg (Bactioi 4R), we
now map the log data (change operations) to the change graph (natleslges). Modelling
change log data as a graph in Figlire 4 allows us exploit the sub-graptgrtéaimiqued [17] for
an automated discovery of (sequential) change patterhs [15]. Corginitimthe earlier example
(addition of aPaymentType component, cf. Figuik 2), in Figlite 4 we present a peiialof a
log graph that is an instance of a change graph in Figure 3.

In Figure[4, the attributed graph morphigm AG — ATG is defined. This means that the
generic elements of ATG (cf. Figuié 3) are instantiated with concrete alsné&AG in Figure

[M. For example, the graph node fratfAT'G) = AG is instantiated agChangeOperation) =
Add(), t(ArchitectureElement) = PaymentType, custPayment sendBilBill getPayment and
t(hasType) = CMP, CON, POR, EPT whdiaymentType, custPayment) hasType CMP, (send-
Bill) hasType POR, (getBill) hasType CON, (getPayment) hasType ER&.graph nodes are
linked to each other using graph edggdor source and target nodé257, 258, 263, 264) repre-
senting the applied sequence of change operations.

The log graph from Figurgl 4 is represented using the Graph Modellinguzage (GML) with
additional details in[[39]. The GML provides a notation that is manipulated bl tand their
underlying algorithms. The GML format provides an XML-based syritamnanipulate the log
graph in an automated way. Also, the attributed graph in GML format is aunt iopthe pattern
discovery process in Sectibh 5.

5 Graph-based Discovery of Architecture Change Patterns

Once change log data is formalised as an attributed gfaph [38], the sdiattha pattern dis-
covery problem is the application of sub-graph mining approached[®r2change log graphs.
More specifically, our solution to graph-based pattern discovery is mi@ogrrent sequences
(cf. Definition[d) of change operations that is equivalent to discovesiriggraphs which occur
frequently in a change log grahé acr.. In this section, we introduce the pattern discovery
problem as a modular solution that enables the parametrisation and cweiomdf the pattern
discovery process.

In Table[d, we provide a list of variables that facilitate the parametrisaticsgufrithms for
pattern discovery. In Tabld 2, we outline a number of utility functions thafrequently used to
maintain the modularity of the pattern discovery process. In order towdsenchitecture change
patterns from logs, we follow a 3-step process illustrated in Figure 5nkists of the (a) pattern
candidate generation, (b) pattern candidate validation and finally (c) patiching as detailed
in the remainder of this section.

5.1 Algorithm | - Candidate Generation

As the initial step of the pattern discovery process, candidate generatisatgenerating a set of
pattern candidateB- from an architecture change graghic ., as illustrated in Figurlgl 5a. Each
of the generated pattern candidate € Pc represents a sub-graph@ficr asPc C Gacr.As
presented in Tabld 1, the difference between a pattern candidate attera jsethat the candidate
must satisfy a specific occurrence frequency to be identified as arpaftegrefore, a pattern
candidate represents a change sequence (collection of graph rsodeange operations) as a
potential pattern depending on its frequertyeq(Pc) in Gacr. We apply a graph clustering

4 Please note that the terminolo@hange Log GraphChange Graptor Log Graphare used
interchangeably that refer to a graph created from change log angtésested a& ac v

Parameter Description

GacL Architecture change graph created from change Log.

Pe Pattern Candidate sequences generated from change gkaph:Gacr.
PAT Discovered Pattern from change graptdT C Gacr

Len(Pc) Candidate length - number of change operations in pattern candtdate
Len(PAT) Pattern length - number of change operations in change pattéfh
minLen(Pc) Minimum candidate length by user: minLdn{) < Len(pc) :pc € Pc
maxLenPc¢) Maximum candidate length by usdren(pc) > maxLen(Pc) : pc € PC
FreqPc) Frequency threshold by user f&¢: to be identified as a pattef@AT.
List(param € G ac)|The list of candidate®c or patternsP AT param C Gacr

Table 1: Parameters for Graph-based Pattern Discovery process.

Function(param) Return |Description

Gacr.size() Integer |Get total number of nodes in log graptucr,

lookUp(Pc) BooleanCandidateP- validation look-up in the invariant table
nodeMatchingt;; nx)|BooleanBijective node matching based @ype Equu() (Section 5.1
exactMatchg,;n;) |BooleanDetermine Exact match from candidd®e to graphG acr
inexactMatchg,; n;) |BooleanDetermine Inexact match from candidd®e graphGacr.

Table 2: A List of Utility Methods for Pattern Discovery.

OPR OPR PR,

lteration 1

00 00 00,

(OPR,OPR:) (OPR;,OPR) (OPR;, OPR:)

Iteration 2

O0rO+-0 O+O-0

(OPR,OPR;, OPR) (OPR;,OPR; OPR:)

[Invalid Candidate]

etBill
PaymentType [z}

[Valid Candidate]
getBill

custPayment[]—[] PaymentType

I_A_|
00,00

a) Candidate Generation

o)
m)

® g
- g
E m, m, g
8 =
=10 ©) ®
@ m [n)
fn} A m) <
Candidate (P) Log Graph Candidate (P,)

" b) Candidate Validation

0 0 ©

'c) Candidate Pattern Matching

©

PaymeanypeDCMP i

f f
| sendsinror il getsill CJcon

getPayment[] EPT i

Figure 5: Overview of 3-Step Graph-based Pattern Discovery Process.

approach([40] otz 41, to create graph clusters representing sub-graphs as pattern casdidate
Figure[Ba. Graph clusters froi4c 1, are created based on the minimum and maximum length
specified by the user asinLen(Pc) < Len(Pc) < maxLen(Pc) as in Tabld1l. The size
Len(P¢) of a cluster Pc) represents the total number of nodes in a cluster that ultimately
represents the number of change operation&dinFor example, in Figuriel 5a the user specifies
minLen(Pc) : 2 andmaxLen(Pc) : 3. In the first iteration candidates are generated such that
the length of each candidate is two nodes, and with the next iteration eatid@@nhaving three

nodes. The generation of pattern candida®es,, . . .

, PC'n (each representing an individual

pattern candidatef{-)) based on graph clustering [40] is expresdeattern Candidates =

Pci = ((OPR1,0OPR3), (OPRy, OPRs3),(OPRs, OPRy))
Pcz = ((OPRy,OPRs,OPR3), (OPRs, OPR3,OPRy)) (1)

Pon = ((OPR;,OPRy,...,OPR,),(OPR;11,0PRy11,...,OPRnt1))

1. Input: is a user specified change gragh ¢ with minimumminLen(Pc) and maximum

maz Len(Pc¢) candidate lengthsiin Len(Pc): 2 andmaz Len(Pc) : 3 in Figureba.

. Process starts at the graph root with the selection of a single node and enumetiaging
temporary candidate list with adjacent node concatenation. Basediohen(Pc) and
max Len(Pc), a temporary candidate list.f f (Pc) is generated as followsw f f (Pc) =
<pC1 (OIDR17 OPRQ),pCQ (OPRQ, OPRS), . 7]7(35(OP)]%2, OPR3, OPR4)> (Line 1- 13)
To avoid this exhaustive candidate list, the candidatés jiy (Pc) are iteratively matched to
find specific candidates that occur at least more than onGe i, . We use the Breadth First

match

Search (BFS)[21] ovefi sc 1. with node Matching(n;;n;) (Table[2) :n;. OPR ——

match

n;.OPR A n;.ARCH —— n;.ARCH to generate the final candidate lisist(Pc)
(Line 10 - 16). In addition, we ensure each candidatec List(Pc) is validated through

candidateValidationf : Gacr) (Line 13, cf. Sectiof 512).

Algorithm 1: : candidateGeneration()

ol
[N}

12:
13:

14:
15:
16:
17:

Input: G acr., minLen(Pc), maxLen(Pc)
Output: List(Pc)
. buff(P¢) <+ ¢ {buffer to hold temporary candidates
root «+— G 4cr.-getRoot()
: for candLength < minLen(P¢) to maxLen(P¢) do
maxCandidates- G 41, size() - candLength
: end for {get total number of candidates
: while root < maxCandidatedo
bUff(PC)node — GACL(node + root)
candLength— candLength + ¥get candidates for validatign
: end while
: List(P¢) + ¢ {List to hold validated candidatgs
: for tempCand— 0 to tempCand< buff(P¢).Length() do
if buff(Pc)iempcand-LENgth() == buff(Pc) cana-Length() then
if nodeMatching(tempCand, candj= true and candidateValidation(cand)
==true then
LiSt(PC)tempCand — bUff(PC)cand
end if
end if
end for
returnlist(Cp)) {return list of validated candidates

3. Output: is a list of generated candidatésst(Pc) such thatninLen(Pc) < Len(Pc) <
maxLen(Pc).

5.2 Algorithm Il - Candidate Validation

During candidate generation, there may exist some false positives is t#roandidates that
violate the structural integrity (invariants) of the architecture model whentified and applied
as patterns. For example, in Figlile 5 b the candidate represents three change operations
as:Operation ladds a componeraymentType, Operation 2adds a porsendBill to compo-
nentPaymentType, and finallyOperation 3adds a connectagetBill. However, the connector
does not provide interconnection with source and target ports (amoqdnnector). Therefore,

it is vital to eliminate a candidate pattefy, that violates architectural integrity (¢i] 5b, in-
valid candidate). In contrast, the candid#te, represents four change operations and provides
interconnection among component ports in Fiddre 5b is referred toa&lacandidate. We elim-
inate invalid candidates through validation for each generated cangidatginst architectural
invariants before pattern matching:

1. Input: is a candidate,, € Pc, Pc C Gac (from candidateGeneration() - Line 13).

2. Process includes look-up into the invariant table in terms of validating the configuratio
of architecture elements in the generated pattern candidates (in Line & ddecifically it
aims at detecting any orphaned components and connectors as afesslbciated change
operations. The orphaned component has no associated interttonrae@ orphaned con-
nectors have no associated components, indicated by Boolean vakie fals

3. Output: is a Boolean value indicating either valid (true) or invalid (false) candidate

Algorithm 2: : candidateValidation()
Input:cp € Gacr
Output:boolean|T RU E /F ALS E] indicating if a candidate is valid of invalid.
1: isValid + false
2: iteration:
3: for node« 0to node< pc.Length do

4: if lookUp(pc.node. ARC' H) ==true then
5: 1sValid < true
6: endif
7. if isValid < false then
8: 1sValid < true
9: break iteration
10: endif
11: end for

12: returngsValid)

5.3 Algorithm Il - Candidate Pattern Matching

After candidate validation, the last step involves candidate pattern matchirgjrained by a
user-specified frequency threshdldeq(Pc) for Pc in G¢. If avalidated candidate ibist(Pc)

occurs N times (determined Wyreq(Pc)), a patternP AT is discovered in change graphicr..
We exploit sub-graph isomorphisms to match graph nodes (changatiops) of P andG ac1,
iteratively.

1. Input:is alist of (validated) candidatds st(P), specified frequency threshaldreq(Cp)
andGc.

Algorithm 3: : patternMatch()

Input: List(Pc), Freq(Pc), GacL

Output:pList(PAT, Freq(PAT))

: gCand(pc : Gac) « ¢ {hold extracted nodes fro ac . }
root «+ G ¢ .getRoot()
: for cand« Oto cand< List(P¢). Length do

freq < 0 {to count frequency oP¢ in G acr}

end for
: while root < G »4¢1..getLeaf() do
exactMatch— 0
inexactMatch— 0 {set exact, inexact match to zéro
: end while
2 if List(Pc)cand-Length() == gCand(root).Length() then

©oNoaAENR

[Eny
o

11: if match(List(Pc)cand-N0de, gCan@oot).node == true) then

12: exactMatch— exactMatch + Kexact match found

13: endif

14: if inexactmatch(List(Pc)cand-node, gCandroot).node == true) then
15: inexactMatch— inexactMatch + Xinexact match foung

16: endif

17: end if

18: if exactMatch =List(P¢)cana-LENgth() OR inexactMatch ==

List(Pc)cand.-Length() then
19: freq++ {increment frequency of pattern discovefed
20: end if
21: if freq > Freq(Pc¢) then
22: pList(PAT, Freq(PAT)k— (List(Pc)cand, freq)
23: end if

2. Process includes retrieving each candidate frabst(Pc) and finds its exact or possible
inexact instance i’ acr. In a match fromPe to G 4, the number of nodes must be equal
(Line 10). We exploit the change operation properties (cf. Definffion Bpeecify: if and
only if all the nodes in the candidate match the corresponding nodes imgelaaph, then
P is isomorphic toG ac 1, as:nodeMatching(Pc,G acL) =

(P, (OPRy,OPRy)) .+ (Pc, (OPR;,OPR;,...,OPRy))

: . : @
GaoL(OPRy,OPR,,...,OPRy) GacL(OPRy,OPRs,...,OPRy)

- Exact Match: It is based on exact sequences in Table 2 (cf. SeCfidn 5.1). Art mxach
requires that there must exist a bijective mapping among types of elapegator and the
type of architecture element in attributed nodes that is given as a utility fun@foTable

[2) exactMatchgode Matching(ni;n;))[V(i,j) = 1... N]that utilises the function (Table

) nodeMatching(ni,n;) method it enables finding an exact match among the candidate
nodesPc (node) to the corresponding nodes in the change gfaph.. (node) in Figuréb

c. In addition, the ordering of matching nodes frdnst(Pc) to Gacr must be same. If
such an exact instance is found, the candidate’s frequency is inetednand matching is
repeated (Line 11, 12).

- Inexact Match: It is based on in-exact sequences in Tdlle 2 (cf. Se€fidn 5.1). Fhe o
der of matching nodes fronkist(Pc) to Gacr is not always the same. Foe example,
inexact Match(nodeMapping(ni;n;))[V(i — j) = 1... N] utilisesnode Matching(n;,n;)
to find an inexact match among the candidate ndgegnode) to the corresponding nodes
in the change grapt¥ 4c.(node) in Figuréb c. The candidate’s frequency is incremented
and matching is repeated until leaf node (Line 14, 15).

3. Output: is a list of identified patterns consisting of the pattern instafgd” and its corre-
sponding frequency'req(Pc). A given candidate is an identified pattern (exact or inexact)
if its frequency is greater or equal to a user-specified frequencgtbld: freq(PAT) >
Freq(Pc).

5.4 Overview of Prototype for Pattern Discovery

After the discussion of the algorithms for pattern discovery, we nowepitethe individual el-
ements of the user interface of the prototype to highlight process autenaatiparametrised
customisation as in Figuké 6.

A Log File Selectionas presented in Figueé 6, the prototype allows a user to select a specific
change log graph file to start the pattern discovery process. Details ettemge log graph
are already presented in Section4.2.

B Pattern Discovery Parameterfacilitate a user of the prototype to customise the pattern
discovery process. We have provided the details of parameterstferrpdiscovery in Table
[as they allow a user to specify:

— Minimum and Maximum Length of the Pattern Candidatediscussed in Sectibn b.1,
a precondition to pattern discovery is the generation of pattern candiddesfore,
specifying the minimum and maximum length of the pattern candidates allowsra u
to specify the exact minimum (3 change operations) and exact maxirb@roh@nge
operations) length of pattern candidates in Fidiure 6.

— Pattern Frequency Thresholdis in Sectiofi 511, the user can also specify the pattern
frequency threshold. It maintains a minimum frequency (3 occue®nihat must be
satisfied to consider the recurring candidates as a discovered pattern.

— Discovery of Exact and Inexact Pattern Instanc8sction 5.2 distinguished between
exact and in-exact pattern instances. The prototype allows a usercityspeney want
to discover both exact (23 patterns) as well as inexact (9 pattern) aestalfi the user
only specifies Exact Pattern Instances, the pattern discovery priscesasiderable
faster but it skips the inexact pattern instances.

C Pattern Discovery Resultas presented in Figufé 6 provides a summary of the results for
pattern discovery process. It highlights the total number of changemes investigated
for pattern discovery. The number of exact as well as inexact patiestances discovered
and the total time taken for pattern discovery.

The discovered patterns need to be specified in a change pattern teMf@atiscuss the proto-
type support for change pattern specification in Se¢fion 6.

|2 Design Preview [GPride] B

J Pattern Discovery] Pattern Specification]

LogFile °

C:MWChangeLogsWWChangelLogGraph.gmi SelectLog Graph |

Pattern Discovery Parameters e

Pattern Candidate Length Minimum Length 3 E] Maximum Length 10 3

Pattern Frequency Threshold Pattern Frequency 3 B

Change Pattern Types Exact Pattern ‘.'7 Exact Pattern ~

Pattern Discovery Results e

Total Change Operations 1253 (Graph Nodes)
Exact Pattern Instances Discovered 23
Inexact Pattern Instances Discovered 09

Total Time Taken 3.85 (Seconds)

Discover Patterns H Specify Patterns \

Figure 6: Screen-shot of Prototype for Change Pattern Specification.

6 A Template-based Specification of Discovered Change Patterns

In this section, we present a template-based specification of the disdasleainge patterns that
facilitate pattern reuse. A template provides a structured format to detuheindividual pat-
terns in terms of pattername theintentof the pattern, itsmpacton the architecture model and
other related information. In the remainder of this section, we explain ttierpaspecification
process (in Sectidn 8.1) and provide an overview of the solution (in $¢6H).

6.1 Specification of the Architecture Change Patterns

We provide a formal template for pattern specification that is based ondteemmodel for pattern-
based evolution (Sectidd 3) and the guidelines for documenting pattednstgas presented
in [18,/41]. We have provided a prototype presented in Fifilire 7 that sltowser to specify
the change patterns in a change pattern template. We exemplify the spieciffoa one of the
discovered patterns named t@emponent Mediatiopattern - an overview of all the discovered
(and specified) patterns is provided later in Sedfioh 6.2. Here we fottiseorole of prototype
to facilitate a pattern author to document the patterns in a semi-automated leaprototype
visualises the impact of a change pattern on the architectural modelllaaswtbe constraints

and change operators. Based on pattern overview, the user préivédaame and intent of the
given pattern to complete a template-based pattern specification followhsgegp Process given

below.

[Design Preview [GPride]

_[Paltern Specification I Pattern Discovery 1

Pattern Nama and Intent _

o

Component Mediation

Pattern Constraints and operators

Pattern Name
Pattern Intent i .

Tointerpose a mediator

compenent (CH) among two or

maore directly connected

components (C1, C2)
Pattern Classification | Inclusion

Preconditions Change Operations Postconditions
v (& root ¥ [Add | [+ & root
¥ [& Components [PaymentType - CMP ¥ (& Components
[BillercRI v (& Ada | BillercRm
[CustPayment || selectType : CON || CustPayment
v E Connectors v E.‘ Add | | PaymentType
; makePayment || custPay . CON v E.‘ Conneclors
v E-E‘ Rem] selectType

; makePayment : CMP [7] custPay

(]

Change Pattern Impact

Pattern Preconditions Pattern Preconditions

Specify Pattern | | Skip Pattern |

Figure 7: Screen-shot of Prototype for Change Pattern Specification.

A Pattern Name and Intenprovide an overview of an individual pattern and its usage. The
name and intent specify the primary role of a pattern during architecualet®n. The
pattern author specifies the name and intent based on the pattern ovéwiexample, in
FigurdT the change pattern impact allows a user to select the paét@eComponent Me-
diation and itsintent “to interpose a mediator componefit, among two or more directly
connected componen(€’:, C2)” . In addition, the user can also providelassificatiortype
for the patterns. The pattern classification (Inclusion, Exclusion, Replant) enables a
logical grouping of related patterns based on the types of architechaabes that a group
of patterns support. For example, tBemponent Mediation pattern can be classified as
an Inclusion type pattern because it enables the inclusion of a new cemdsy in an
existing architecture model.

B Pattern Constraints and Operatongrovide an overview of theonstraintson the architec-
ture model that must be preserved before and after the pattern ajopliea well as the

change operatorthat enable pattern-based change implementation. For example, in Figure
[7 the constraints o€omponent Mediation pattern specify that before pattern application
there must exist two componerits;, C>) interconnected using a connecfor as a precon-
dition. In addition, the change operators enable the addition of the newos@nf',, and

its connectorsX», X3 and removing its old connectdt;. Finally, the constraints specify
that after the pattern application, a mediator compoganthas been successfully integrated

in the architecture (post-condition).

C Change Pattern Impacprovides an overview of the impact of a given pattern on the ar-
chitecture model. It allows a user to see the changes a pattern enalues dygblying the
pattern. The pattern provides a process-based change implementataplizitly repre-
senting the conditions before, during and after the change implementation.

6.2 Overview of the Discovered Change Patterns

After pattern specification, we provide an overview of the discovergtbqain Figure 8. In
Figure[8, we only provide a listing of all the patterns in terms gdatjern name and parameters
b) pattern intentc) change operationalisatioand d)pattern-based change impact

1. Pattern Name and ParametersA pattern name provides an identification of a pattern to
its user. In addition, the parameters represent the affected architettmments as a conse-
guence of pattern application.

2. Pattern Intent] It represents a high-level pattern description in terms of the objective of
pattern usage. For example, in Figlte 8 Haétern NameComponent Mediation specifies
the intent as a pattern that enables itiegration of a mediator component C; with
directly connected component C4, Cs.

3. Change Operationalisationlt provides an operational syntax and semantics of architectural
changes as a constrained composition of operators to enable arcleiabiution.

4. Pattern-based Change Impactt represents the impact of change pattern on architecture
models represented as the pre-conditions and post-conditions ofecpattgrn.

7 Evaluation of Pattern-based Architecture Evolution

In this section, we demonstrate the applicability of change patterns to evpkerdo-peer sys-
tem to a client-server architecture (in Section 7.1). We also evaluate #hetsetif the change
patterns on efficiency of the architecture evolution process (in Séct®n 7.

7.1 Pattern-based Architecture Evolution

A high-level architectural view of the peer-to-peer appointment sygR2®-AS) [42] is pre-
sented in Figurg]9. Architectural components and connectors amesegpied inside configura-
tions for modelling of P2P-AS system. The patterns presented in Sédtidis&yered from
the EBPP[[34] and 3-in-1 Telephone Systeml [35] case studies) aliecappd cross-validated
to evolve a peer-to-peer architecture to a client-server architectuditiédwhl details about the
component-connector view of P2P-AS architecture are provided jn [42

5 The term'pattern intent'was first used in the GoF book to describe the primary objective of a
pattern. However, nowadays, it is also common among pattern autbenrsto use terms like
pattern overview - pattern thumbnails or problem/solution-pairs.

Pattern Name and Parameters

Component Mediation

(1€,] <C,.C C,)

Functional Slicing
(IC]<C1,C25)

Functional Unification
(c1,c2>1[C))

Active Displacement
(<C1:C2><C1:C3>
[c2:c3))

Child Creation
([C1] < X1:C1>)

Child Adoption
(<C1:X1>,
<C2:X1>)

Child Swapping
(IX1:C1),[X2: C2]
<X2:Cl><X1:C2>)

Pattern Intent

Component Mediation Integrates
amediator component (Cy;)
among two or more directly
connected components (C,, C,)

Split acomponent (C) into two
or more components (C,,C,)
for functional decomposition of C.

Merge two or more components
(C,.C,) into a single component
(C) for functional unification of

%2

Replace an existing component (C,)
with a new component (C,) while
maintaining the interconnection with
existing component (C,, C,).

Create a child component (X,)
inside an atomic component
(C,), Clis acomposite now.

Adopt a child component (X,)
from a composite component (C,)
to an atomic component (C,)

Swap the child components (X;.X,)
from composite components
(X,,X,) from composite

Change Operations

-oprl: Add(C,, : Component)

-opr2: Add(X, (C,,, C,) : Connector)
-opr3: Adr.i(X3 ©Cy Xa) : Connector)
-opr4: Rem(X, (C,, C,) : Connector)

-opri: Add(cl: Component)
-opr2: Add(C,: Component)
-opr3: Rem(C : Component)

-oprl: Rem(C, : Component)
-opr2: Rem(C,: Component)
-opr3: Add(C : Component)

-oprl: Add(C, : Component)
-opr2: Rem(C,: Component)
-opr3: Add(X, (C,, C,) : Connector)

-opr2: Rem(X, (C,, C,) : Connector)

-oprl: Add(X, : Component)
- 0pr2: Mov(C(X,) : Component)

-oprl: Rem(C1(X,) : Component)
-opr2: Add(C,(X,) : Component)

-oprl: Rem(C1(X,) : Component)
-0pr2: Add(C,(X,) : Component)
- opr3: Rem(C2(X,) : Component)
- oprd: Add(C,(X,) : Component)

Change Pattern Impact

<<POST>>

:
+

<<POST>>

<<PRE>>

<<PRE>>

<<POST>>

-

<<POST>>

s

<<POST>>

Configuration > .
Add (ARCH) - ﬁ Transformation
A
—Connector__ [A] pre m— post
Remove(ARCH) X Move (from: A, to:B) conditions conditions

Figure 8: List of Discovered Architecture Change Patterns.

7.1.1 Source Architecture Model

The source architecture model of the P2P-AS system is presented ie[Bithat consists of two
configurationsClient and Appointment Data. The Client configuration consists of an atomic
componenfAppointment Client to request an appointment from the composite compoApnt
pointment Schedule in the Appointment Data configuration. TheAppointment Schedule
component is composed Gfient Authentication component. The connectget Appointment
enables the component interconnection.

7.1.2 Evolution Scenarios, Change Primitives and Patterns

We have presented the evolution scenario in Figlire 9 (extracted fror2 ERAB case studiz [42]).
We now provide a mapping of the evolution scenario (evolution problerd)the necessary
change primitives and change patterns (as available solutions) in[Jable 3.

1. Change Primitivesrepresent a collection of composite change operations to enable addition,
removal and modification of individual components and connectasti@[3, cf. Change

Source Architecture

Appointment System

Appointment Data

Client

Appointments Schedule

Client
Client |:I B Authentication

Evolution Scenario 1 l Evolution Scenario 2

’—[! Appointment Server t}‘
Client
Schodule F 8 cosirmin |
Client
Appointment Client [} B honication —
Appointment Client |1} T nentieation

.

Evolved Architecture

Appointment System

Server

ports

Component | _connector_ [[‘

out_in

Figure 9: Source and Evolved Architecture with Architecture EvaatScenarios.

Operators). For example, in Evolution Scenario 1 (TRble 3) changédtpemequires at-least
a total of 4 change operations to integrate a mediator component in existimieature.
We only consider changes on architectural components and comentiting changes on
ports and endpoints - it has already been explained that componeritsontain ports and
connectors must contain endpoints (Sediibn 3, Architecture Model).

2. Change Patternsabstract the change primitives and provides a generic and reusaée op
tionalisation to enable architecture evolution. In contrast to primitives,gghpatterns pro-
vide a process-based implementation of architecture evolution. A pattptares a reusable
solution, its impact on architecture models (pattern pre/post conditionisjh@nnecessary
operations to enable evolution (detailed in Sediibn 6). For example in Evolatienario 1
(Table[3), theComponent Mediation pattern provides a reusable solution to primitives (ad
hoc once-off change operations). We consider the specificatioreetgrditions, a pattern
and its post-conditions equivalent to a specification of 3 change opesation

7.1.3 Evolved Architecture Model

After the application of the change patterns to address the evolution sxerthe evolved ar-
chitecture model is presented in Figlile 9. The evolved architecturelmodsists of a new
configurationAppointment Server that is interposed betwedTlient and Appointment Data.
In the evolved architecture model, the composite compoAgpbintment Server is used to
handle the client request for appointments.

Evolution Scenario 1

To interpose thé\ppointmentServer component between thgppointmentClients and
AppointmentSchedule components. The newly integrated Appointment Server componenataed
between the client requests and appointment scheduling.

Change Primitives

CS-AS architecture is modified with addition of a new compoggointmentServer and two
connectorsdetAppointment, getSchedule) to enable mediation between Clients and
Appointment components.

oprl := ADD(AppointmentServer € CM P)

opr2 := ADD(get Appointment((AppointmentClient, AppointmentServer) € CMP) € CON)
opr3 := ADD(getSchedule((AppointmentServer, AppointmentSchedule) € CMP) € CON)
oprd := REM (get Appointment((AppointmentClient, AppointmentServer) € CMP) € CON)

Change Pattern

Component Mediation([Cu] < C1,Cu, Ca >)
=] .
o =
CZ Cl CZ
<<PRE>> <POST>>

To interpose a mediator compone6t{/) among two or more directly connected componeéts (C-).

Evolution Scenario 2

To create a child compone@lientRegistration inside theAppointmentServer component. The
newly addedClient Registration component enables registration of individual clients on the server.

Change Primitives

CS-AS architecture is modified by creating tBeentRegistration component (atomic component)
in Appointment Server (composite component) and a connegister).

oprl := ADD(ClientRegister € CMP)

opr2 := ADD(register((Client Register, AppointmentClient) € CMP) € CON)

Change Pattern

ChildCreation([C] < X1 : C >)

C
o]~ B
:]

<<PRE>> <<POST>>

To create a child componenk{) inside an atomic componenty.

Table 3: A Summary of Evolution Scenarios, Change Primitives andngb&Patterns.

7.2 Efficiency of Pattern-based Evolution

After presenting evolution scenarios and patterns to address thesgissewe discuss the results
of the evaluation. A summary of the evaluation results is presented in MableTable[4, we
compare the efficiency of change implementation using change primétiepatterns with:

1. Total Change OperationsTo quantify the required efforts for change implementation, we
count the number of change operators required for implementing rrgehand call this
Total Change Operations (TCO). TCO is definedhastotal number of architecture change
operations required to resolve an architecture evolution scenditw.example, in Tablgl4
the TCO value for component integration is 4.

2. Ratio of Change Operationalisation (Primitive vs Pattern)Represents the ratio of change

operators from pattern to primitive changes expressetl as(ZTCO). Nrco denotes the
TCO

number of change operations required by the patterns fN);o denotes the number of

change operations required by the primitive (E). For an example,age7,

Change Pattern Change Primitive Efficiency Comparison
Pattern Name TCOQlIntent of Primitive TCO|Nrco/Erco
Component Mediatiofl |Integration of Components|4 |25
Parallel Mediation |1 |Integration of Components|3 |33
Correlated Mediation1 |Integration of Components|8 |12.5
Functional Slicing |1 [Splitting of Components |3 |33
Functional Unificationl ~ |Merging of Components (3 |33
Active Displacement|1 |Replacement of Componemnds (25
Child Creation 1 |Composition of Componenté |25
Child Adoption 1 |Move a Component 4 |25
Child Swap 1 |Swap a Component 4 |25

1 4.11|26%

Table 4: A Summary of Efforts for Change Primitives and Change Paster

Based on the summary of results in Table 4 we provide an overview ofoim@arative analy-
sis for TCO for primitive and pattern-based changes. In contrasttterpa, primitive changes
require between 3 and 8 change operations to implement a particulayechamddition, pattern-
based changes provide a process-based overview of change iempéeion. The results suggest
that:

Pattern-based changes take only 29% of change operations comjogpeichitive changes.
However, pattern-based change does not support a fine-granhéarge representation.

The loss of granularity results in:

1. Change Implementation at Higher Abstractiorpatterns with reusable but coarse-grained
changes only provide generic changes that affect component®andators. This abstrac-
tion do not support lower level changes changes at the componerdtmms level, that are
exposed at ports. In contrast, the change primitives supported witlicaaoihcomposite ar-
chitectural changes support a fine granular change represenfidimgranularity of change
implementation is a concern of source code chariges [36] and notcthigeature evolution.

. Structural Integrity of Architecture Model the granularity of architectural changes ensure
that architectural integrity is preserved (components and their pomectors have bind-
ings). In our solution, architectural hierarchy is preserved with cargeerations that are
abstracted in patterns.

8 Conclusions and Future Research

In this paper, we investigated architecture change logs - performingtanpartem analysis of ar-
chitectural evolution histories - to discover change patterns. In the daftaschitectural knowl-

edge, the discovered patterns represent reusable knowledgepmrtisexthat can be empirically
discovered and reused to promote the notion of evolution-off-the-ghstfftware architectures.
The novelty of this research is a three-step process for evolution teassEvolves (a)pattern

discovery (b) pattern specificationand (c)pattern instantiation To automate the pattern dis-
covery process from change logs, we model the change log dataraptaand exploit graph

mining for change pattern discovery. Once the patterns are discoweeeprovide a template-
based specification to facilitate pattern documentation and its future reanaély,Fwe illustrate

how pattern-based architecture evolution increases the efficiency @fr¢théecture evolution
processes and promote reusable change implementation.

Dimensions for Future Researchinclude the evaluation of pattern discovery algorithms and
pattern based reusability with more case studies. We need log data fremediftase studies as
the developed algorithms can facilitate automated log mining to discover riesmrza The newly
discovered patterns are assumed to support the composition and tipplafaa change pattern
languageto support architecture evolution reuse. A pattern language providatexrpcollec-
tion such that the patterns in the language are formalised and intercathriElti® means change
patterns from the language could be selected and applied in a sequesttiahféo support an
incremental evolution. By incremental evolution we mean decompostigtectural evolution
into a manageable set of evolution scenarios that could be addressstkpraise manner. An-
other interesting dimension is the possible identification and resolutiohasfge anti-patterns
Change anti-patterns represent counter-productive and negatieetisof patterns on architec-
ture models that can be mitigated to enhance the quality of architecture emolutio

References

1. T. Mens and S. Demeye3pftware Evolutionlst ed. Springer: Berlin Heidelberg, 2008.

2. K. H. Bennett and V. T. Rajlich, “Software Maintenance and EvolutidrRoadmap,” in
Conference on the Future of Software EngineeringCM, 2000, pp. 73-87.

3. M. M. Lehman and J. F. Ramil, “Software Evolution: Backgroundedtly, Practice,Infor-
mation Processing Lettersol. 88, no. 1, pp. 33—-44, 2003.

4. S. Lehnert, Q. Farooq, and M. Riebisch, “A Taxonomy of Change3 and its Application
in Software Evolution,” inl9th International Conference and Workshops on Engineering of
Computer Based SystemdEEE, 2012, pp. 98-107.

5. A. Ahmad, P. Jamshidi, and C. Pahl, “Graph-based Pattern Idatitificfrom Architec-
ture Change Logs,” inn Tenth International Workshop on System/Software Architecture
Springer, 2012, pp. 200-213.

6. H. P. Breivold, I. Crnkovic, and M. Larsson, “A Systematic RevigiSoftware Architec-
ture Evolution Researchlihformation and Software Technolagyol. 54, no. 1, pp. 16—40,
2012.

7. D. Garlan, J. M. Barnes, B. Schmerl, and O. Celiku, “Evolution Styfesindations and
Tool Support for Software Architecture Evolution,” doint Working IEEE/IFIP Conference
on Software Architecture, 2009 and European Conference on Softwelniekture. WIC-
SAJECSA |EEE, 2009, pp. 131-140.

8. P. Jamshidi, M. Ghafari, A. Aakash, and C. Pahl, “A FrameworlCllassifying and Com-
paring Architecture-centric Software Evolution Researchl7ith European Conference on
Software Maintenance and Reengineering (CSMR’18tEE, 2013, pp. 305-314.

9. A. Ahmad, P. Jamshidi, and C. Pahl, “Classification and ComparisoArchitecture
Evolution-Reuse Knowledge - A Systematic Review,Jaurnal of Software: Evolution and
Process. DOI: 10.1002/smr.1643Wiley, 2014.

10. J. Gimara, P. Correia, R. De Lemos, D. Garlan, P. Gomes, B. Schrmef|Ra Ventura,
“Evolving an Adaptive Industrial Software System to Use Architectuasell Self-
adaptation,” irBth International Symposium on Software Engineering for Adaptive and Self-
Managing Systems IEEE, 2013, pp. 13—-22.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. O. Le Goaer, D. Tamzalit, M. Oussalah, and A.-D. Seriai, “EvoluBbelf: Reusing Evo-
lution Expertise Within Component-based Software Architectures32nd Annual IEEE
International Computer Software and Applications, 2008. COMPSAC'UBEE, 2008, pp.
311-318.

K. Yskout, R. Scandariato, and W. Joosen, “Change patterngv@wing Requirements
and Architecture,"Journal of Software and Systems Modeling. DOI 10.1007/s10270-012
0276-6 pp. 1-24, 2012.

H. Kagdi, M. L. Collard, and J. I. Maletic, “A Survey and TaxonowfyApproaches for
Mining Software Repositories in the Context of Software Evolutidiotirnal of Software
Maintenance and Evolution: Research and Practied. 19, no. 2, pp. 77-131, 2007.

T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Miningsia Histories to
Guide Software ChangedFEEE Transactions on Software Engineeringl. 31, no. 6, pp.
429-445, 2005.

R. Agrawal and R. Srikant, “Mining Sequential PatternsfhifEleventh International Con-
ference on Data Engineering, (ICDE’95) IEEE, 1995, pp. 3-14.

J. M. Barnes and D. Garlan, “Challenges in Developing a Softweskit&cture Evolution
Tool as a Plug-Ins,” ifProceedings of the 3rd Workshop on Developing Tools as Plugin-Ins
(TOPI13) 2013, pp. 13-18.

C. Jiang, F. Coenen, and M. Zito, “A Survey of Frequent Syidgidining Algorithms,”
The Knowledge Engineering Reviewl. 1, no. 1, pp. 1-31, 2012.

N. B. Harrison, P. Avgeriou, and U. Zdlin, “Using Patterns to Cap#urchitectural Deci-
sions,”|EEE Softwarevol. 24, no. 4, pp. 38-45, 2007.

X. Dong and M. W. Godfrey, “Identifying Architectural ChangetBens in Object-oriented
Systems,” inThe 16th IEEE International Conference on Program ComprehensitEEE,
2008, pp. 33-42.

S. Bouktif, Y.-G. Gueheneuc, and G. Antoniol, “Extracting Chapaterns from CVS
Repositories,” inProceedings of the 13th Working Conference on Reverse Engineering
IEEE Computer Society, 2006, pp. 221-230.

B. G. H. Tong, C. Faloutsos and T. Eliassi-Rad, “Fast Best-B¥aitern Matching in Large
Attributed Graphs,” in13th ACM International Conference on Knowledge Discovery and
Data Mining, 2007.

M. Javed, Y. M. Abgaz, and C. Pahl, “Graph-based Discovér@mology Change Pat-
terns,” inJoint Workshop on Knowledge Evolution and Ontology Dynami€EUR Work-
shop Proceeding, 2011, pp. 309-318.

L. P. V. H. Babar MA, Dingsyr Tsoftware Architecture Knowledge Management: Theory
and Practice Springer Heidelberg, 2009.

E. Gamma, R. Helm, R. Johnson, and J. VlissiBesign Patterns: Abstraction and Reuse
of Object-oriented Design Springer-Verlag LNCS, 1993.

N. R. Mehta and N. Medvidovic, “Composing Architectural Stylesfrrchitectural Prim-
itives,” in 9th European Software Engineering Conference held jointly with 11th ACM SIG
SOFT International Symposium on Foundations of Software Engineeraig28, no. 5.
ACM, 2003, pp. 347-350.

26

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

A. Ahmad, P. Jamshidi, and C. Pahl, “Graph-based Discovenprohitecture Change
Patterns from Logs,Technical Report: School of Computing, Dublin City Universy13.
[Online]. Available; www.computing.dcu.i¢~pjamshidi/PatternDiscovery.pdf

L. Yu, “Mining Change Logs and Release Notes to Understand Saftaintenance and
Evolution,” CLEI Electron Journalvol. 12, no. 2, pp. 1-10, 2009.

P. Mohagheghi and R. Conradi, “An Empirical Study of Softwahar@e: Origin, Accep-
tance rate, and Functionality vs. Quality Attributes hiternational Symposium on Empirical
Software Engineering, ISESE'04IEEE, 2004, pp. 7-16.

V. Clerc, P. Lago, and H. van Vliet, “The Architect Mindset,” $oftware Architectures,
Components, and Applications Springer, 2007, pp. 231-249.

A. Ahmad, P. Jamshidi, M. Arshad, and C. Pahl, “Graph-basedlidit Knowledge Dis-
covery from Architecture Change Logs,” in Seventh Workshop on SHaring and Reusing
Architecture Knowledge ACM, 2012, pp. 116-123.

N. Medvidovic and R. N. Taylor, “A Classification and Comparisoanfework for Soft-
ware Architecture Description LanguagetfEE Transactions on Software Engineering
vol. 26, no. 1, pp. 70-93, 2000.

A. Ahmad and C. Pahl, “Pat-Evol: Pattern-drive Reuse in Architedbased Evolution for
Service Software,” vol. 88. ERCIM News, 2012, pp. 200-213.

N. Lassing, D. Rijsenbrij, and H. van Vliet, “How Well can We Prediba@ges at Archi-
tecture Design Time?Journal of Systems and Softwavel. 65, no. 2, pp. 141-153, 2003.

EBPPCaseStudy, “Nacha - the electronic hill presentment and guayniOnline].
Available:; www.nacha.oig

3-in-1 Phone System, “K3: Cordless Telephony Profiiifetooth Specification Versipn
vol. 1, 1999.

B. J. Williams and J. C. Carver, “Characterizing Software Architedthanges: A System-
atic Review,"Information and Software Technolqgyol. 52, no. 1, pp. 31-51, 2010.

P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet, “Architedtevel Modifiability
Analysis (ALMA),” Journal of Systems and Softwavel. 69, no. 1, pp. 129-147, 2004.

H. Ehrig, U. Prange, and G. TaentZeundamental theory for typed attributed graph trans-
formation Lecture Notes in Computer Science, Springer-Verlag, 2004.

U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. $fiall, “GraphML
Progress Report - Structural Layer Proposal Giraph Drawing Springer, 2002, pp. 501—
512.

D. W. Brandes Ulrick, M. Gaertler, “Experiments on Graph Clustefilgorithms,” in11th
Annual European Symposium on Algorithm&ecture Notes in Computer Science, 2007.

P. Clements, D. Garlan, R. Little, R. Nord, and J. Stafford, “Dasting Software Archi-
tectures: Views and Beyond,” ia5th International Conference on Software Engineering,
2003 |EEE, 2003, pp. 740-741.

N. S. Rosa, P. R. F. Cunha, and G. R. R. Justo, “An ApproacRdasoning and Refining
Non-functional RequirementsJournal of the Brazilian Computer Societyol. 10, no. 1,
pp. 59-81, 2004.

www.computing.dcu.ie\/~pjamshidi/PatternDiscovery.pdf
www.nacha.org

	Introduction
	Related Work
	Change Pattern Discovery
	Change Pattern Application
	Industrial Research on Implications of Reuse on Architecture Evolution

	A Meta-model of Pattern-based Architecture Evolution
	Graph-based Modelling of the Architecture Change Log Data
	The Source and Types of Change Log Data
	Evolution Case Studies as the Source of Change Log Data
	Types of Data in a Change Log

	Creating the Change Log Graph
	Mapping the Change Log Data to Change Log Graph

	Graph-based Discovery of Architecture Change Patterns
	Algorithm I - Candidate Generation
	Algorithm II - Candidate Validation
	Algorithm III - Candidate Pattern Matching
	Overview of Prototype for Pattern Discovery

	A Template-based Specification of Discovered Change Patterns
	Specification of the Architecture Change Patterns
	Overview of the Discovered Change Patterns

	Evaluation of Pattern-based Architecture Evolution
	Pattern-based Architecture Evolution
	Source Architecture Model
	Evolution Scenarios, Change Primitives and Patterns
	Evolved Architecture Model

	Efficiency of Pattern-based Evolution

	Conclusions and Future Research

