
Graph-based Pattern Discovery from Software Architecture
Change Logs

Aakash Ahmad, Pooyan Jamshidi, Claus Pahl
Lero - the Irish Software Enginneering Research Centre

School of Computing, Dublin City University, Ireland
[ahmad.aakash‖pooyan.jamshidi‖claus.pahl]@computing.dcu.ie

Abstract: Modern software systems are subject to a continuous evolution under frequently vary-
ing requirements and changes in operational environments. Lehman’slaw of continuing change
demands for long-living and continuously evolving software to prolong asystem’s productive life
and economic value with frequent change implementation. We investigate architecture change
logs - performing a post-mortem analysis of architectural evolution histories - to discover change
patterns that support (a) reusability of architectural changes and (b)enhance the efficiency of the
architecture evolution process. We formalise the change log data as a graph and provide the algo-
rithms that utilise sub-graph mining techniques to discover the sequences of recurring change as
patterns. The primary contribution of this research is an automated discovery and template-based
specification of architecture change patterns from logs. The analysis ofchange logs have resulted
in the discovery of 7 new change patterns and some pattern variants. We documented the patterns
and applied them to evolve a peer-to-peer system to a client-server architecture. The proposed al-
gorithms promote pattern discovery as a continuous process and provide a foundation to develop
a collection of change patterns that grows overtime with newly discovered patterns.

Key Words: Software Architecture, Software Evolution, Evolution Patterns, Repository Mining.

Category: D.2.10 - Design, D.2.11 - Software Architectures, M.8 - Knowledge Reuse.

1 Introduction

Modern software systems continuously evolve as a consequence of frequent changes in business
and technical requirements and their operating environments [1,2]. Lehman’s law of ’continuing
change’ [3] states that”. . . systems must be continually adapted or they become progressivelyless
satisfactory”. The primary challenges associated to supporting a continuous change are [2,4] (a)
acquisition and application of reusable solutions to address recurring evolution problems and
(b) selection of an appropriate abstraction for software change implementation. To address the
challenges above, we propose that the acquisition of reusable solutions as discovered change
patterns [5] promotes reuse and efficiency in architecture-centric software evolution (ACSE) [6].

Software architecture models proved successful in representing code modules and their intercon-
nections as high-level components and connectors that facilitate the analysis and implementation
of software design and evolution at higher abstraction levels [7, 8]. Oursystematic reviews of
research on ACSE [8, 9] suggests that solutions that tackle recurring evolution problems must
rely on a continuous discovery of evolution-centric knowledge that can be reused to guide archi-
tecture change management. Some industrial research also demonstrates that reuse knowledge
saves up to 40% of the effort for architecture evolution compared to an ad hoc and once-off
implementation of recurring architectural changes [10]. In [9] we defined architecture evolution
reuse knowledge as”a collection and integrated representation (problem-solution map) of ana-
lytically discovered, generic and repeatable change implementation expertise that can be shared
and reused as a solution to frequent (architecture) evolution problems”.

Evolution styles [7, 11] and change patterns [12] promote the application of reuse knowledge in
architecture evolution process. However, there is a lack of research on the acquisition of reuse
knowledge that involves a continuous discovery of new styles and patterns. In contrast to the ex-
isting research on pattern application [7, 12], there is a need for solutionsthat support empirical
discovery of patterns by investigating pattern sources. In this researchwe unify the concepts of (a)
software repository mining[13,14] and (b)software evolution[1,2] to discover and apply archi-
tecture change patterns. First, we apply repository mining techniques on architecture change logs
to discover recurring changes as patterns and document them using pattern templates. Second,
we utilise software evolution concepts and apply the discovered patterns to support architectural
evolution. We hypothesise that:

a continuous experimental investigation of architecture change logs enables the discovery of
architecture change patterns that can be shared and reused (to guide the ACSE process).

Research Challenges and Solution Overview -based on the hypothesis above, the primary
challenges for this research include (a) an automateddiscoveryof architecture change patterns
by mining change logs, (b) a template-basedspecificationof the discovered patterns, and (c)
applicationof these patterns to support reuse of architecture evolution. Considering architecture
change analysis in [15,16], in addition to automation; user intervention is also required - human-
centric feedback and supervision - for the pattern discovery process. To address these challenges,
we provide the solution as a 3-step process that enables the discovery, specification and applica-
tion of architecture change patterns. In step 1 we capture structural architectural changes - from
architecture evolution case studies - in logs and formalise the change log data as a graph. In this
research, we only focus on changes that evolve architectural structure, while the analysis of be-
havioural changes represents a possible dimension of future research. Once log data is formalised
as a graph, in step 2 we apply sub-graph mining [17] techniques to identifyrecurring architec-
tural changes as patterns. Finally, in step 3 a template-based change pattern specification allows
us to document individual patterns and enables their reuse whenever the needs for pattern usage
arises [18].

Research Contributions - a case-study based demonstration highlights the applicability of the
discovered patterns to guide architecture change management. In the context of existing solutions
for pattern [12] and style-driven [7] evolution, the primary contributionof this research is:

- Exploiting architecture change logs as a source of evolution-centric knowledge that enable
post-mortem analysis of architecture evolution histories for automated discovery of reusable
change patterns.

- A template-based specification provides a formal documentation for discovered patterns and
builds-up the foundation for a collection of architecture change patterns.

- In contrast to the ad hoc and once-off implementation of architectural changes, change pat-
terns increase reusability for frequent change implementation and enhance the efficiency of
the architectural evolution process.

This paper provides a significant extension to our previous research [5] and provides: (a) Automa-
tion of pattern discovery with algorithms, (b) Documentation of discoveredpatterns to enhance
their reusability and (c) Validation of the discovered patterns with a case study. The scalabil-
ity of pattern-discovery process beyond manual analysis is supportedwith a prototypeG-Pride
(Graph-based Pattern Identification) that enables automation and parametrised user intervention
for pattern mining from logs.

The remainder of this paper is organised as follows. We discuss the related research in Section
2 and present a meta-model for pattern-based architecture evolution inSection 3. We present the
types of change log data and its formalisation as a graph in Section 4. In Section 5, we present
the algorithms for change pattern discovery and discuss a template-based pattern specification
in Section 6. We evaluate the applicability and the impact of change patterns onarchitecture
evolution in Section 7. Finally, we present the conclusions and future research in Section 8.

2 Related Work

To justify the proposed contribution(s), we provide an overview of the existing - academic and
industrial - research on pattern discovery and pattern application. The discussion is guided by our
systematic review on pattern-based reuse of architecture evolution [9].We analyse and compare:

- the state of academic research on pattern discovery (Section 2.1) andpattern application
(Section 2.2) in the context of proposed solution, and

- the relevance of the proposed solution to existing industrial studies (Section 2.3) on change
reusability in architecture evolution process.

2.1 Change Pattern Discovery

Based on a systematic classification and comparison on existing researchin [4, 8, 9], solutions
for discovery of architecture change patterns are not well established. More specifically, the only
notable work is on the identification of architectural change patterns from object-oriented soft-
ware [19]. In contrast to the pattern identification by analysingsource codes changesin [19,20],
our solution discovers patterns by mining the history ofarchitecture evolutionusing change logs.
Our solution is also able to discover patterns and pattern variants that is not addressed in [19].
We propose that the discovered patterns could only be reused if they aredocumented or specified
using a pattern template. The novelty of our solution is a 3-step process forpattern-based archi-
tecture evolution. We promote patterns as generic and reusable solutions that can be (a)identified
as recurrent, can be (b)specified onceand (c)instantiated multiple timesto support change reuse
in ACSE.

Graph-based Pattern Discovery- We discuss the most relevant graph mining approaches to sup-
port change pattern discovery - an approach fundamental to our pattern discovery solution. The
concept of discovering sequential patterns was first presented in [15]. Since then, there is a grow-
ing development of algorithms and mathematical solutions for mining sequential patterns across
different domains [21,22]. Specifically, the solution to our pattern identification problem are Fre-
quent Sub-graph Mining (FSM) techniques [17]. In our solution, we have exploited the concept of
sequential pattern mining [15] by using the sub-graph mining techniques [17] to develop pattern
discovery algorithms. These algorithms automate the pattern discovery process.

2.2 Change Pattern Application

In contrast to pattern discovery (in Section 2.1), the research on pattern application for architec-
tural evolution is better established. More specifically, in recent years theemergence of change
patterns [12] and evolution styles [7, 11] promoted solutions that can leverage reuse knowledge
and expertise1 to tackle recurring problems in architecture evolution. Both the change patterns
and evolution styles although conceptually innovative, they build-upon the more conventional
philosophy behind design patterns [24] and architectural styles [25] to address evolution-centric
issues in software architectures.

Change patternsfollow the reuse methods and techniques to offer a generic solution to frequent
evolution problems. Pattern-based solutions enablecorrective, adaptiveandperfectivechanges
(as per ISO/IEC change taxonomy [4]) to support both design-time as well as runtime evolution.
In contrast to change patterns,evolution stylesfocus on defining, classifying, representing and

1 In the architecture knowledge[23] community the terms knowledge and expertise represent
the empirically discovered solutions that can be shared and reused to support the development
and evolution of software architectures [9].

reusing frequent evolution plans. Style-based approaches are limited toaddressing thecorrec-
tive andperfectivechanges implemented as design-time evolution and do not support adaptive
changes that implement runtime evolution.

In [8, 9], we reported that change patterns and evolution styles promoteapplication of evolution
reuse knowledge in ACSE processes. However, there is a clear lack ofresearch on acquisition
of evolution reuse knowledge that involves a continuous discovery of new styles and patterns.
Therefore, in contrast to existing work on reusable pattern and style application [7, 11, 12], we
propose that patterns must be (empirically) discovered by (systematically) investigating pattern
sources [26]. To enhance or enable reusable change managementthere is a growing need for
solutions that facilitate a continuous discovery of reuse knowledge as the frameworks and patterns
by investigating evolution histories [13,27] that is the focus of this research.

2.3 Industrial Research on Implications of Reuse on Architecture Evolution

The industrial research can be divided into (a) reusable adaptation plans and (b) survey-based
analysis of evolution reuse. In [10], the authors support reuse of adaptation policies to support
dynamic adaptation of the architecture for an industrial system called Data Acquisition and Con-
trol Service (DCAS). DCAS system is used to monitor and manage highly populated networks of
devices in renewable energy production plants. The research demonstrates that reuse of recurring
adaptation strategies and policies saves about 40% of the effort for architecture evolution com-
pared to an ad hoc and once-off implementation of adaptive changes [10]. In other research [28],
the authors analysed change requests from four different releasesof a large telecom system archi-
tecture developed by Ericsson over a three-year period. The research highlights that change reuse
has resulted in (a) anincreased maintainabilityevaluated in cost of implementing architectural
change scenarios, (b)improved testability, (c) easier upgrades, and also (d)increased perfor-
mance. The impact of software reuse, especially exploiting COTS (CommercialOff-The-Shelf)
components is essential to enhance reuse of architectural componentsand their evolution.

Survey-based Study- In an interesting study (The Architect’s Mind-set) [29] the authors per-
formed a survey-based analysis in the industry. The authors collected feedback on the importance
of architectural knowledge that can be shared and reused to design, develop and evolve software
architectures. Based on the results of the feedback, the study reflects the architect’s mind-set on
architectural knowledge. It concludes that:

... an increase in the efficiency of the architecture evolution process requires increased (initial)
effort to integrate reuse knowledge and expertise (empirically discovered and systematically doc-
umented solution) in the process. However, the reuse knowledge and expertise has a direct impact
on reduced cost and time to implement changes during future software evolution.

Our research can be compared to the work in [10], and we provide an experimental discovery
of patterns to support reuse of future changes. However, our research is only focused on design-
time evolution of software architectures. The primary focus of our research is to automate pattern
discovery and validate pattern reusability.

3 A Meta-model of Pattern-based Architecture Evolution

In software architecture change logs [30], we observed that architectural changes can be op-
erationalised and parametrised to support architecture evolution. More specifically, architecture
elements that are added, removed, or modified are specified as parameters of change operations.
The recurring architectural changes represent a change pattern as“a generic, first class abstrac-
tion to support potentially reusable architectural change operationalisation” . A typical example
of a change pattern is the replacement of a legacy componentC1 with a new componentC2
represented asReplace (C1, C2). In Figure 1, the meta-model for pattern-based architecture

evolution provides the structural composition of a change pattern and the relationships that ex-
ist between pattern elements. For example, the relationship among two of theelements (change
pattern and change operators) represents that a change pattern is composed of change operations.
The existing architectural description languages [31] do not support an explicit change imple-
mentation on architectural model (components and connectors etc.). The proposed meta-model
incorporates the architecture model and also provides change operations on this model to evolve
architectural descriptions. To enable pattern discovery and pattern-based architectural evolution,
we must specify the individual elements of the meta-model from Figure 1as below.

1 Specifying the Architecture Model (ARCH) - the architecture model is composed of the
architecture elements to which a pattern can be applied during change execution. We repre-
sent the architecture model as topological configurations (CFG) based on a set of architec-
tural components (CMP) as the computational entities, linked through connectors (CON) [7].
Furthermore, architectural components are composed of component ports (POR), while con-
nectors are composed of endpoints (EPT) to bind component ports. Therefore, consistency
of pattern-based change and structural integrity of architecture elements beyond component-
based (also service component) architecture model is undefined. We further discuss the ar-
chitecture model and its evolution in Section 4.

Change patterns in this paper address component-based software engineering in general and
existing research on component-based software architecture and theirevolution [7, 11] in
particular. We believe that architecture descriptions in a meta-model can be extended to
model more conventional object-oriented architectures [19]; however this possibility can
only be seen as a future work.

OperatorType

Add(arch: ARCH)

Mod(arch: ARCH)

Rem(arch: ARCH)

OperatorComposition

Atomic Change Composite Change

isContainedBy

isComposedOf

PatternCollection : COL

1..*

out() ChangePattern:PAT
 in(ChangePattern: PAT)

 - name : String

 - intent : String

 - id : Integer

ChangePattern : PAT

ChangeOperators : OPR

1..*

- oprExp : String

Constraints : CNS

InvPRE POST

isConstrainedBy

1..*

Component Connector

Port Endpoint

isApplieTo

1..1

source

target

Pattern Element Composition Relation Specialisation Relation

Configuration

ArchitectureModel : ARCH

Figure 1: A Meta-model Representation for Pattern-based Architecture Evolution.

2 Specifying the Change Operators (OPR) - the change operators represent change in-
stances that are fundamental to operationalising architectural evolution.Our analysis of the
change log [30, 32] goes beyond basic change types that address addition (ADD), removal
(REM), and modification (MOD) of elements in architecture models [11, 33]. More specifi-
cally, first we distinguish between atomic and composite operations and theninvestigate the

sequential composition of composite operations to discover recurring sequences as change
patterns. Architectural composition during change operationalisation is preserved with:

- Atomic Change Operations:these enable fundamental changes in terms of adding, re-
moving, or modifying the component ports (POR) and connector endpoints (EPT). For
example, an addition of a new portP in an existing componentC is expressed as follows
(∈ represents type of element).

Add(P ∈ POR,C ∈ CMP).

- Composite Change Operations:these are sequential collections of atomic change op-
erations, combined to enable composite architectural changes. These enable adding,
removing, or modifying architectural configurations (CFG) with components (CMP)
containing ports, connectors (CON) containing endpoints (for component port bind-
ing). For example, addition of a new componentC with a portP in a configurationG is
specified as follows (≺ represents operational sequence).

Add(C ∈ CMP,G ∈ CFG) ≺ Add(P ∈ POR,C ∈ CMP)

Components are the first class elements (computation and data store) of architecture model.
Therefore changes to connectors are consequential, i.e., connectors are only added or re-
moved as a consequence of the addition or removal of components. Change operators rep-
resent primitive changes [7] that are composed into pattern-based changes [30]. Operators
abstract addition, removal, and modification of components and connectors to support the
frequent composition, decomposition, and replacement of architecture elements in the archi-
tecture. We further discuss change operations on the architecture model in Section 4.

3 Specifying the Constraints on Change Operations (CNS) -the constraints refer to a
set of pattern-specific conditions in terms of pre-conditions (PRE - the conditions before
application of a pattern) and post-conditions (POST - the conditions after application of
a pattern) to ensure the consistency of pattern-based changes. In addition, the invariants
(INV - the conditions satisfied during application of a pattern) ensure structural integrity of
individual architecture elements during change execution. For example, during addition of a
componentC, the preconditions ensure that a componentC does not exist in a configuration
G, and the postconditions ensure that a componentC containing a portP is successfully
added to a configurationG. We further discuss the constraints during architecture evolution
in Section 4.

4 Specifying the Change Patterns (PAT) - a change pattern defines a first-class abstrac-
tion that can be operationalised and parametrised to support potentially reusable architec-
tural change execution. A pattern has anameand anintent that represents a recurring, con-
strained (CNS) composition of change operationalisation (OPR) on architecture elements
(aem ∈ ARCH) - in Figure 1. We further discuss pattern discovery in Section 6 and pattern
application in Section 7.

5 A Collection of Architecture Change Patterns (COL) - the pattern collection is a repos-
itory infrastructure that facilitates an automatedstorage(in: once-off specification) andre-
trieval (out: multiple instantiation) of discovered change patterns. It also supports pattern
classification for a logical grouping of related patterns based on the typesof architectural
changes they support. Pattern specification is detailed in Section 6.

The background details about pattern discovery and representation enable us to present the
change log data (in Section 4) and pattern discovery from logs (in Section 5).

4 Graph-based Modelling of the Architecture Change Log Data

To exploit the sub-graph mining approaches for frequent pattern mining from logs, we model the
log data as a graph. In this section we explain (a) what are thesourceand typesof change log
data (in Section 4.1) and (b) how log data isformalised as a graph(in Section 4.2).

4.1 The Source and Types of Change Log Data

In the context of software repository mining research [13], an architecture change log refers to ’an
explicit source of evolution-centric knowledge that maintains and provides a sequential collection
of architecture change history that has been aggregating over time’ [27,33]. We define a change
log as follows:

Definition 1. Architecture Change Log - Let OPR represent an individual change operation,
an architecture change log (ACL) is a sequential collection of change operations expressed as a
tupleACL =< OPR1 ≺ OPR2 ≺ OPRN >.

≺ represents a sequencing operation between change operations (OPR1 toOPRN). The change
operations represent a sequential collection of architectural changes(Add, Remove, and Modify)
on elements of architecture model (components, connectors, and configurations) (cf. Figure 1).

4.1.1 Evolution Case Studies as the Source of Change Log Data

The source of the change log data refers to the architectural evolution case studies [34,35] with all
individual architectural changes captured in the log. In this research,we assume that the change
logs evolve over time with acquisition of new evolution-centric data from different sources.

Capturing Architectural Changes in the Logis an automated process that is enabled by preserv-
ing individual changes in the log as illustrated in Figure 2. This means, whenever an individual
change was applied to the architecture elements it was captured in the log. Tocomplement a con-
tinuous pattern discovery the algorithms can automate log mining whenever new data is available.
Currently, we analyse architectural evolution cases of an a) Electronic Bill Presentment and Pay-
ment System (EBPP) [34] and b) 3-in-1 Phone system [35]. To enableexperimental investigation
of change history, architectural evolution of two different systems provides us with an adequate
amount of data for pattern discovery2 - for space reason only the EBPP case study is used as
running example in this paper. The adequacy of the log data is defined as:(a) granularity of the
architectural change instances(i.e., atomic and composite changes, cf. Section 3), and (b)total
number of changesfor pattern discovery (thousands of individual changes). We present a partial
architectural view for the EBPP case study in Figure 2a and explain an evolution scenario to
capture architectural change instances3 in the logs - Figure 2b. We utilise the Architecture Level
Modifiability Analysis (ALMA) [37] for evolution scenario elicitation and analysis of EBPP ar-
chitecture evolution. We follow the ALMA methodology with a three step process for selection,
evaluationandinterpretationof the evolution scenario.

2 Each individual architectural change from the case studies is capturedin the
log file as the basis for pattern discovery from change logs provided here:
http://ahmadaakash.wix.com/aakash#!changelogdata/c22ju

3 In literature the termsarchitecture change instanceandarchitecture change operationare
often used interchangeably [30, 36]. For example a change instance that adds a component
C can be operationally expressed as:Add(C ∈ CMP). Operationalising an instance explicitly
provides a name (Add) and parameters (architecture element∈ hasType) for a change instance.

http://ahmadaakash.wix.com/aakash##!changelogdata/c22ju

a) Partial View of EBPP Architecture (before Evolution)

in/out

Port

out in

Connector
Component

e.Src e.Trg

BillerCRM

invoicePay

custInvoice custPayment

makePaymentpayInvoice

<<Composite>>

monthPayment

custPayment

weekPayment

<<Atomic>>

b) Capturing Architectural Changes in ACL

Architecture
Evolution

Change
Representation in Log

PaymentType

BillerCRMCustPayment

getBill selectType

SendBill PayBill

A

B
 - userID := aakash_ADM1
 - changeID := 257
 - changeDateTime := 2012-02-17::10:37:52
 - changeIntent := to integrate a component inebpp
 - systemID:= ebpp

opr1:= Add(PaymentType CMP, Payment CFG)
opr2:=Add(PayBill("in") POR, PaymentType CMP)
opr3:=Add(SendBill("out") POR, PaymentType CMP)
opr4:=Remove(makePayment CON, Payment CFG)
oprn:=

∈ ∈
∈ ∈
∈ ∈

Change Data

Auxiliary Data

∈ ∈

Figure 2: a) Partial Architectural View for EBPP and b) Change Instances in ACL

Step 1. Scenario Selection - Integration of Architectural Component: As the first step, scenario se-
lection aims at selecting all (or a subset of) architectural change scenarios for scenario-based
analysis of architecture evolution. As an example, we present the evolution scenario of com-
ponent integration in the EBPP case study. The scenario demonstrates that in the existing
functional scope of the case study (Figure 2a), the company chargesits customer with full
payment of customer bills prior to delivering the requested services. Now, the company plans
to facilitate existing customers with either direct debit or the credit-based payments of their
bills. In Figure 2b, this evolution scenario is represented as:integration of a mediator com-
ponentPaymentType that facilitates the selection of a payment type (direct debit, credit pay-
ment) mechanism among the directly connected componentsBillerCRM andCustPayment.

Step 2. Scenario Evaluation - Analysing Architectural Changes for Component Integration: After
the scenario was selected, in this step we are interested in analysing the architectural change
operations applied to architecture elements to evaluate and execute the scenario. For exam-
ple, in the case of component integration, existing EBPP architecture is modified with addi-
tion of new componentsPaymentType (and corresponding ports) and two connectorgetBill
andselectType to mediate the customer billing and payments in Figure 2b. This results in
recording individual change operations in the log (change data) along with the intent, time
and effects of change (auxiliary data) in Figure 2b.

Step 3. Results Interpretation - Impacts of Changes on Architecture Model: After evaluation and
execution, as the final step we interpret the results of a given evolution scenario based on the
impact of changes on existing architecture. The results interpretation is based on analysing
source architecture (as preconditions of evolution) Figure 2a, the change operations applied
on source architecture to achieve the evolved architecture (as post-conditions of evolution)
Figure 2b.

4.1.2 Types of Data in a Change Log

Once change instances are recorded in the log, change log data is classified asChange Data (CD)
andAuxiliary Data (AD)as represented in Figure 2b.

- Change Data (CD): contains the core information about individual change instances or op-
erations in the log. This is expressed asCD = (ChangeID,OPR,ARCH) representing

changeid(opr1, opr2, . . . , oprn) along with change operations on architecture elements.
For example in Figure 2b, change data represents the change id asopr1 to add a new com-
ponentPaymentType inside thePayment configuration.

- Auxiliary Data (AD): provides the additional details about individual change instances in the
log, representing the time, user, intent of changes. The auxiliary data is expressed as:AD =
(UserID, T imeStamp,ChangeIntent, SytemID) that is captured automatically and
consists of user id (Aakash-ADM1), date-time (10:37:52/17/02/2012), intent of change
(to integrate a component in ebpp) and the system identifier (ebpp) to which the change is
performed in Figure 2b. Auxiliary data is particularly useful for architectural change analysis
based on the source, intent, time of change and facilitates in extracting specific (time/user-
based etc.) architecture change sessions from logs.

4.2 Creating the Change Log Graph

In this section we focus on formalising change instances from log as an attributed graph (AG)
with nodes and edges typed over an attributed typed graph (ATG) [38]. Please note that an ATG in
Figure 3 represents a meta-graph to model change log data as an AG thatrepresents an instance-
graph in Figure 4. An inherent benefit with graph-based modelling of logdata lies with exploita-
tion of sub-graph mining - a formalised graph mining technique - whereasrecurring sub-graphs
in the log graph can be discovered as frequent change patterns.

Attributed Edge Attributed Node

hasEdge hasNode1..* 1..*

Attributed Type Graph

- userID : String
- changeID : String
- Intent : String
- SystemID : String
- TimeStamp : DateTime

Change Operators Architecture Model
Graph Edge

Node Attribute Edge Edge Attribute Edge

source

target

Composition Generalisation Association

Figure 3: Attributed Typed Graph Model to Formalise Architecture Change Log Data

Definition 2. Architecture Change Log Graph - A collection of change operations (cf. Figure
1) from log (cf. Definition 1) are expressed as a change log graphGACL = 〈NG, NA, EG, ENA

, EEA
〉

– Graph Nodesrepresent change operations on architecture model:NG, NA ∈ Nodes,

– Graph Edgesrepresents a sequencing of the operations as adjacent nodes:EG, ENA
, EEA

∈
Edges.

The attributed graph morphismM from an instance graphAG (Figure 3) to its meta-graphATG
(Figure 4) is expressed asM : AG → ATG. A collection of change operations in the log are
expressed as an attributed change log graphGACL in Figure 3 - nodes and edges defined as:

1. Graph Nodes:NG =
〈

ni
g|i = 1, . . . ,m

〉

represents a set of graph nodes. Each graph node
(ng ∈ NG) represents a single change log entry (i.e., a single change operation). The se-
quencei = 1, . . . ,m refers to the total number of change operations that exist in the log.
We assume concurrent or commutative change operations (if any in thelog) are represented
as a sequence, where each of the change operations is executed one after the other (i.e. se-
quenced change log) [5,30].

2. Attribute Nodes: NA =
〈

ni
a|i = 1, . . . ,m

〉

represents a set of attribute nodes for graph
nodes (NG). Attribute nodes are of two types, a) attribute nodes that represent auxiliary
data (e.g., userID, changeID, TimeStamp etc.) and b) attribute nodesthat represent change
data and its subtypes (e.g., operation type, architecture model). The sequencej = 1, . . . ,m
refers to the total number of attribute nodes in a change log graph.

3. Graph Edges:EG =
〈

ni
g|i = 1, . . . ,m− 1

〉

represents a set of graph edges that connects
two graph nodesNG. The graph edges (eg ∈ EG) represent the applied sequence of change
operations (OPR) applied to the architecture model (ARCH). The sequencei = 1, . . . ,m−1
represents total graph edges in a log graph.

4. Node Attribute Edges: ENA
=

〈

eina|i = 1, . . . , p
〉

represents the set of node attribute
edges that join an attribute node (na ∈ NA) to a graph node (ng ∈ NG). The sequence
i = 1, . . . , p refers to the total number of node attribute edges in change log graph.

5. Edge Attribute Edges: EEA
=

〈

eiea|i = 1, . . . , q
〉

is the set of edge attribute edges that
join an attribute node (na ∈ NA) to an attributed edge (ena). The sequencei = 1, . . . , q
refers to the total number of edge attribute edges in a change graph.

Add()

PaymentType

CMP

sendBill

POR

TimeStamp

Add() Add()

getpayment

EPT

ChangeID TimeStampChangeID TimeStamp

258 17-02-2012::10:39:13 263

ChangeID TimeStamp

26417-02-2012::10:40:08

hasType hasType hasType

17-02-2012::10:37:52257

1 1 1
hasParameter hasParameter hasParameter

order order order

Add()

PaymentType, custPayment

CMP

hasType

2
hasParameter

order

getBill

CON

hasType

1
hasParameter

order

Start of Change
Session

End of Change
SessionSequential Collection of Change Instances

Change DataAuxiliary Data Parameters
Change Sequence Change Composition

PaymentType sendBill custPayment
getBill

ChangeID = 257
Add a Component

ChangeID = 258
Add a Port

ChangeID = 263
Add a Connector

ChangeID = 264
Add an Endpoint

a) Change Instance as Represented in the Change Log

b) Change Instance Represented as a Session Graph

userID

aakash_ADM1

ChangeID

17-02-2012::10:41:35

Figure 4: Change Instances as an Attributed Graph (typed over ATG in Figure 3).

4.3 Mapping the Change Log Data to Change Log Graph

After presenting the change log data (Section 4.1) and the change log graph (Section 4.2), we
now map the log data (change operations) to the change graph (nodes and edges). Modelling
change log data as a graph in Figure 4 allows us exploit the sub-graph mining techniques [17] for
an automated discovery of (sequential) change patterns [15]. Continuing with the earlier example
(addition of aPaymentType component, cf. Figure 2), in Figure 4 we present a partialview of a
log graph that is an instance of a change graph in Figure 3.

In Figure 4, the attributed graph morphismt : AG → ATG is defined. This means that the
generic elements of ATG (cf. Figure 3) are instantiated with concrete elements of AG in Figure
4. For example, the graph node fromt(ATG) = AG is instantiated ast(ChangeOperation) =
Add(), t(ArchitectureElement) = PaymentType, custPayment sendBill, getBill, getPayment and
t(hasType) = CMP, CON, POR, EPT where(PaymentType, custPayment) hasType CMP, (send-
Bill) hasType POR, (getBill) hasType CON, (getPayment) hasType EPT. The graph nodes are
linked to each other using graph edgeseg for source and target nodes(257, 258, 263, 264) repre-
senting the applied sequence of change operations.

The log graph from Figure 4 is represented using the Graph Modelling Language (GML) with
additional details in [39]. The GML provides a notation that is manipulated by tools and their
underlying algorithms. The GML format provides an XML-based syntaxto manipulate the log
graph in an automated way. Also, the attributed graph in GML format is an input to the pattern
discovery process in Section 5.

5 Graph-based Discovery of Architecture Change Patterns

Once change log data is formalised as an attributed graph [38], the solutionto the pattern dis-
covery problem is the application of sub-graph mining approaches [5, 21] on change log graphs.
More specifically, our solution to graph-based pattern discovery is miningrecurrent sequences
(cf. Definition 1) of change operations that is equivalent to discoveringsub-graphs which occur
frequently in a change log graphs4 GACL. In this section, we introduce the pattern discovery
problem as a modular solution that enables the parametrisation and customisation of the pattern
discovery process.

In Table 1, we provide a list of variables that facilitate the parametrisation ofalgorithms for
pattern discovery. In Table 2, we outline a number of utility functions that are frequently used to
maintain the modularity of the pattern discovery process. In order to discover architecture change
patterns from logs, we follow a 3-step process illustrated in Figure 5. It consists of the (a) pattern
candidate generation, (b) pattern candidate validation and finally (c) pattern matching as detailed
in the remainder of this section.

5.1 Algorithm I - Candidate Generation

As the initial step of the pattern discovery process, candidate generation aims at generating a set of
pattern candidatesPC from an architecture change graphGACL, as illustrated in Figure 5a. Each
of the generated pattern candidatepci ∈ PC represents a sub-graph ofGACL asPC ⊆ GACL. As
presented in Table 1, the difference between a pattern candidate and a pattern is that the candidate
must satisfy a specific occurrence frequency to be identified as a pattern. Therefore, a pattern
candidate represents a change sequence (collection of graph nodes as change operations) as a
potential pattern depending on its frequencyFreq(PC) in GACL. We apply a graph clustering

4 Please note that the terminologyChange Log Graph, Change Graphor Log Graphare used
interchangeably that refer to a graph created from change log and is represented asGACL.

Parameter Description
GACL Architecture change graph created from change Log.
PC Pattern Candidate sequences generated from change graph:PC ⊆ GACL

PAT Discovered Pattern from change graph:PAT ⊆ GACL

Len(PC) Candidate length - number of change operations in pattern candidatePC

Len(PAT) Pattern length - number of change operations in change patternPAT
minLen(PC) Minimum candidate length by user: minLen(PC) ≤ Len(pc) :pc∈ PC

maxLen(PC) Maximum candidate length by user:Len(pc) ≥ maxLen(PC) : pc ∈ PC
Freq(PC) Frequency threshold by user forPC to be identified as a patternPAT .
List(param ∈ GACL) The list of candidatesPC or patternsPAT param ⊆ GACL

Table 1: Parameters for Graph-based Pattern Discovery process.

Function(param) Return Description
GACL.size() Integer Get total number of nodes in log graphGACL

lookUp(PC) BooleanCandidatePC validation look-up in the invariant table
nodeMatching(nj ;nk) BooleanBijective node matching based onTypeEquv() (Section 5.1)
exactMatch(ni;nj) BooleanDetermine Exact match from candidatePC to graphGACL

inexactMatch(ni;nj) BooleanDetermine Inexact match from candidatePC graphGACL

Table 2: A List of Utility Methods for Pattern Discovery.

Add() Add() Add() Add()

OPR
1 OPR

2
OPR

3
OPR

4

1 2 3 2 3 4

321 ,, OPROPROPR 432 ,, OPROPROPR

1 2 2 3 3 4

21,OPROPR 32,OPROPR 43,OPROPR

a) Candidate Generation

PaymentType send
getBill

[Invalid Candidate]

1 2 3

[Valid Candidate]
getBill

PaymentTypecustPayment

1 2 3 4

b) Candidate Validation

Log GraphCandidate (P
Cj

)

E
xa

ct
 M

at
ch

1

2

3

1

2

3

4

3

2

1

m
1

m
2

m
3

m
1

m
2

m
3 In

-E
xa

ct
 M

at
ch

Candidate (P
Ck

)

c) Candidate Pattern Matching

Add() Add() Add() Add()

PaymentType CMP∈ sendBill POR∈ getBill CON∈ getPayment EPT∈

1 2 3 4

Iteration 1

Iteration 2

PCj

PCk

Figure 5: Overview of 3-Step Graph-based Pattern Discovery Process.

approach [40] onGACL to create graph clusters representing sub-graphs as pattern candidates in
Figure 5a. Graph clusters fromGACL are created based on the minimum and maximum length
specified by the user asminLen(PC) ≤ Len(PC) ≤ maxLen(PC) as in Table 1. The size
Len(PC) of a cluster (PC) represents the total number of nodes in a cluster that ultimately
represents the number of change operations inPC . For example, in Figure 5a the user specifies
minLen(PC) : 2 andmaxLen(PC) : 3. In the first iteration candidates are generated such that
the length of each candidate is two nodes, and with the next iteration each candidate having three
nodes. The generation of pattern candidatesPC1, . . . , PCN (each representing an individual

pattern candidate (PC)) based on graph clustering [40] is expressed:Pattern Candidates =

PC1 = 〈(OPR1, OPR2), (OPR2, OPR3), (OPR3, OPR4)〉

PC2 = 〈(OPR1, OPR2, OPR3), (OPR2, OPR3, OPR4)〉

PCN = 〈(OPRj , OPRk, . . . , OPRn), (OPRj+1, OPRk+1, . . . , OPRn+1)〉

(1)

1. Input : is a user specified change graphGACL with minimumminLen(PC) and maximum
maxLen(PC) candidate lengthsminLen(PC): 2 andmaxLen(PC) : 3 in Figure 5a.

2. Process: starts at the graph root with the selection of a single node and enumeratingthe
temporary candidate list with adjacent node concatenation. Based onminLen(PC) and
maxLen(PC), a temporary candidate listbuff(PC) is generated as follows:buff(PC) =
〈pc1(OPR1, OPR2), pc2(OPR2, OPR3), . . . , pc5(OPR2, OPR3, OPR4)〉 (Line 1 - 13).
To avoid this exhaustive candidate list, the candidates inbuff(PC) are iteratively matched to
find specific candidates that occur at least more than once inGACL. We use the Breadth First

Search (BFS) [21] overGACL with nodeMatching(ni;nj) (Table 2) :ni.OPR
match
−−−−→

nj .OPR ∧ ni.ARCH
match
−−−−→ nj .ARCH to generate the final candidate listList(PC)

(Line 10 - 16). In addition, we ensure each candidatepci ∈ List(PC) is validated through
candidateValidation(cp : GACL) (Line 13, cf. Section 5.2).

Algorithm 1: : candidateGeneration()
Input:GACL, minLen(PC), maxLen(PC)
Output:List(PC)

1: buff(PC)← φ {buffer to hold temporary candidates}
2: root← GACL.getRoot()
3: for candLength← minLen(PC) to maxLen(PC) do
4: maxCandidates← GACL.size() - candLength
5: end for {get total number of candidates}
6: while root ≤ maxCandidatesdo
7: buff(PC)node ← GACL(node + root)

8: candLength← candLength + 1{get candidates for validation}
9: end while

10: List(PC)← φ {List to hold validated candidates}
11: for tempCand← 0 to tempCand≤ buff(PC).Length() do
12: if buff(PC)tempCand.Length() == buff(PC)Cand.Length() then
13: if nodeMatching(tempCand, cand)== true and candidateValidation(cand)

== true then
List(PC)tempCand ← buff(PC)cand

14: end if
15: end if
16: end for
17: return(List(CP)) {return list of validated candidates}

3. Output : is a list of generated candidatesList(PC) such thatminLen(PC) ≤ Len(PC) ≤
maxLen(PC).

5.2 Algorithm II - Candidate Validation

During candidate generation, there may exist some false positives in terms of candidates that
violate the structural integrity (invariants) of the architecture model when identified and applied
as patterns. For example, in Figure 5 b the candidate PCj represents three change operations
as:Operation 1adds a componentPaymentType, Operation 2adds a portsendBill to compo-
nentPaymentType, and finallyOperation 3adds a connectorgetBill. However, the connector
does not provide interconnection with source and target ports (an orphan connector). Therefore,
it is vital to eliminate a candidate patternPCj that violates architectural integrity (cf. 5b, in-
valid candidate). In contrast, the candidatePCk

represents four change operations and provides
interconnection among component ports in Figure 5b is referred to as a valid candidate. We elim-
inate invalid candidates through validation for each generated candidatepc against architectural
invariants before pattern matching:

1. Input : is a candidatecpi ∈ PC , PC ⊆ GACL (from candidateGeneration() - Line 13).

2. Process: includes look-up into the invariant table in terms of validating the configuration
of architecture elements in the generated pattern candidates (in Line 3). More specifically it
aims at detecting any orphaned components and connectors as a resultof associated change
operations. The orphaned component has no associated interconnection and orphaned con-
nectors have no associated components, indicated by Boolean value false.

3. Output : is a Boolean value indicating either valid (true) or invalid (false) candidatecp.

Algorithm 2: : candidateValidation()
Input: cp ∈ GACL

Output:boolean[TRUE/FALSE] indicating if a candidate is valid of invalid.

1: isV alid← false
2: iteration:
3: for node← 0 to node≤ pc.Length do
4: if lookUp(pc.node.ARCH) == true then
5: isV alid← true
6: end if
7: if isV alid← false then
8: isV alid← true
9: break iteration

10: end if
11: end for
12: return(isV alid)

5.3 Algorithm III - Candidate Pattern Matching

After candidate validation, the last step involves candidate pattern matching constrained by a
user-specified frequency thresholdFreq(PC) forPC inGC . If a validated candidate inList(PC)

occurs N times (determined byFreq(PC)), a patternPAT is discovered in change graphGACL.
We exploit sub-graph isomorphisms to match graph nodes (change operations) ofPC andGACL

iteratively.

1. Input : is a list of (validated) candidatesList(PC), specified frequency thresholdFreq(CP)
andGC .

Algorithm 3: : patternMatch()
Input:List(PC), Freq(PC), GACL

Output:pList(PAT, Freq(PAT))

1: gCand(pc : GACL)← φ {hold extracted nodes fromGACL}
2: root← GACL.getRoot()
3: for cand← 0 to cand≤ List(PC). Length do
4: freq← 0 {to count frequency ofPC in GACL}
5: end for
6: while root ≤ GACL.getLeaf() do
7: exactMatch← 0
8: inexactMatch← 0 {set exact, inexact match to zero}
9: end while

10: if List(PC)cand.Length() == gCand(root).Length() then
11: if match(List(PC)cand.node, gCand(root).node == true) then
12: exactMatch← exactMatch + 1{exact match found}
13: end if
14: if inexactmatch(List(PC)cand.node, gCand(root).node == true) then
15: inexactMatch← inexactMatch + 1{inexact match found}
16: end if
17: end if
18: if exactMatch ==List(PC)cand.Length() OR inexactMatch ==

List(PC)cand.Length() then
19: freq++ {increment frequency of pattern discovered}
20: end if
21: if freq ≥ Freq(PC) then
22: pList(PAT, Freq(PAT))← (List(PC)cand, freq)
23: end if

2. Process: includes retrieving each candidate fromList(PC) and finds its exact or possible
inexact instance inGACL. In a match fromPC toGACL the number of nodes must be equal
(Line 10). We exploit the change operation properties (cf. Definition 1) tospecify: if and
only if all the nodes in the candidate match the corresponding nodes in a change graph, then
PC is isomorphic toGACL as:nodeMatching(PC , GACL) =

〈PC1
(OPR1, OPR2)〉 · · · 〈PCn(OPRi, OPRj , . . . , OPRk)〉

...
. . .

...
GACL(OPR1, OPR2, . . . , OPRN) GACL(OPR1, OPR2, . . . , OPRN)

(2)

- Exact Match: It is based on exact sequences in Table 2 (cf. Section 5.1). An exact match
requires that there must exist a bijective mapping among types of change operator and the
type of architecture element in attributed nodes that is given as a utility function (cf. Table
2) exactMatch(nodeMatching(ni;nj))[∀(i, j) = 1 . . . N] that utilises the function (Table
2) nodeMatching(ni, nj) method it enables finding an exact match among the candidate
nodesPC (node) to the corresponding nodes in the change graphGACL (node) in Figure 5
c. In addition, the ordering of matching nodes fromList(PC) to GACL must be same. If
such an exact instance is found, the candidate’s frequency is incremented and matching is
repeated (Line 11, 12).

- Inexact Match: It is based on in-exact sequences in Table 2 (cf. Section 5.1). The or-
der of matching nodes fromList(PC) to GACL is not always the same. Foe example,
inexactMatch(nodeMapping(ni;nj))[∀(i → j) = 1 . . . N] utilisesnodeMatching(ni, nj)
to find an inexact match among the candidate nodesPC (node) to the corresponding nodes
in the change graphGACL(node) in Figure 5 c. The candidate’s frequency is incremented
and matching is repeated until leaf node (Line 14, 15).

3. Output : is a list of identified patterns consisting of the pattern instancePAT and its corre-
sponding frequencyFreq(PC). A given candidate is an identified pattern (exact or inexact)
if its frequency is greater or equal to a user-specified frequency threshold:freq(PAT) ≥
Freq(PC).

5.4 Overview of Prototype for Pattern Discovery

After the discussion of the algorithms for pattern discovery, we now present the individual el-
ements of the user interface of the prototype to highlight process automation and parametrised
customisation as in Figure 6.

A Log File Selectionas presented in Figure 6, the prototype allows a user to select a specific
change log graph file to start the pattern discovery process. Details about change log graph
are already presented in Section 4.2.

B Pattern Discovery Parametersfacilitate a user of the prototype to customise the pattern
discovery process. We have provided the details of parameters for pattern discovery in Table
1 as they allow a user to specify:

– Minimum and Maximum Length of the Pattern Candidate:as discussed in Section 5.1,
a precondition to pattern discovery is the generation of pattern candidates.Therefore,
specifying the minimum and maximum length of the pattern candidates allows a user
to specify the exact minimum (3 change operations) and exact maximum (10 change
operations) length of pattern candidates in Figure 6.

– Pattern Frequency Threshold:as in Section 5.1, the user can also specify the pattern
frequency threshold. It maintains a minimum frequency (3 occurrences) that must be
satisfied to consider the recurring candidates as a discovered pattern.

– Discovery of Exact and Inexact Pattern Instances:Section 5.2 distinguished between
exact and in-exact pattern instances. The prototype allows a user to specify if they want
to discover both exact (23 patterns) as well as inexact (9 pattern) instances. If the user
only specifies Exact Pattern Instances, the pattern discovery processis considerable
faster but it skips the inexact pattern instances.

C Pattern Discovery Resultsas presented in Figure 6 provides a summary of the results for
pattern discovery process. It highlights the total number of change operations investigated
for pattern discovery. The number of exact as well as inexact patterns instances discovered
and the total time taken for pattern discovery.

The discovered patterns need to be specified in a change pattern template.We discuss the proto-
type support for change pattern specification in Section 6.

A

B

C

B-1

B-2

B-3

C-1

C-1

C-3

C-4

Figure 6: Screen-shot of Prototype for Change Pattern Specification.

6 A Template-based Specification of Discovered Change Patterns

In this section, we present a template-based specification of the discovered change patterns that
facilitate pattern reuse. A template provides a structured format to document the individual pat-
terns in terms of patternname, theintentof the pattern, itsimpacton the architecture model and
other related information. In the remainder of this section, we explain the pattern specification
process (in Section 6.1) and provide an overview of the solution (in Section 6.2).

6.1 Specification of the Architecture Change Patterns

We provide a formal template for pattern specification that is based on the meta-model for pattern-
based evolution (Section 3) and the guidelines for documenting patterns and styles presented
in [18, 41]. We have provided a prototype presented in Figure 7 that allows a user to specify
the change patterns in a change pattern template. We exemplify the specification for one of the
discovered patterns named theComponent Mediationpattern - an overview of all the discovered
(and specified) patterns is provided later in Section 6.2. Here we focus on the role of prototype
to facilitate a pattern author to document the patterns in a semi-automated way.The prototype
visualises the impact of a change pattern on the architectural model as well as the constraints

and change operators. Based on pattern overview, the user providesthe name and intent of the
given pattern to complete a template-based pattern specification following a 3-step process given
below.

A

B

C

A-1

A-2

A-3

B-1 B-2 B-3

C-1 C-2

Figure 7: Screen-shot of Prototype for Change Pattern Specification.

A Pattern Name and Intentprovide an overview of an individual pattern and its usage. The
name and intent specify the primary role of a pattern during architecture evolution. The
pattern author specifies the name and intent based on the pattern overview. For example, in
Figure 7 the change pattern impact allows a user to select the patternnameComponent Me-
diation and itsintent “to interpose a mediator componentCM among two or more directly
connected components(C1, C2)” . In addition, the user can also provide aclassificationtype
for the patterns. The pattern classification (Inclusion, Exclusion, Replacement) enables a
logical grouping of related patterns based on the types of architectural changes that a group
of patterns support. For example, theComponent Mediation pattern can be classified as
an Inclusion type pattern because it enables the inclusion of a new componentCM in an
existing architecture model.

B Pattern Constraints and Operatorsprovide an overview of theconstraintson the architec-
ture model that must be preserved before and after the pattern application as well as the

change operatorsthat enable pattern-based change implementation. For example, in Figure
7 the constraints ofComponent Mediation pattern specify that before pattern application
there must exist two components(C1, C2) interconnected using a connectorX1 as a precon-
dition. In addition, the change operators enable the addition of the new componentCM and
its connectorsX2, X3 and removing its old connectorX1. Finally, the constraints specify
that after the pattern application, a mediator componentCM has been successfully integrated
in the architecture (post-condition).

C Change Pattern Impactprovides an overview of the impact of a given pattern on the ar-
chitecture model. It allows a user to see the changes a pattern enables before applying the
pattern. The pattern provides a process-based change implementation by explicitly repre-
senting the conditions before, during and after the change implementation.

6.2 Overview of the Discovered Change Patterns

After pattern specification, we provide an overview of the discovered pattern in Figure 8. In
Figure 8, we only provide a listing of all the patterns in terms of a)pattern name and parameters,
b) pattern intent, c) change operationalisationand d)pattern-based change impact.

1. Pattern Name and ParametersA pattern name provides an identification of a pattern to
its user. In addition, the parameters represent the affected architecture elements as a conse-
quence of pattern application.

2. Pattern Intent5 It represents a high-level pattern description in terms of the objective of
pattern usage. For example, in Figure 8 thePattern NameComponent Mediation specifies
the intent as a pattern that enables theintegration of a mediator component CM with
directly connected component C1, C2.

3. Change OperationalisationIt provides an operational syntax and semantics of architectural
changes as a constrained composition of operators to enable architecture evolution.

4. Pattern-based Change ImpactIt represents the impact of change pattern on architecture
models represented as the pre-conditions and post-conditions of change pattern.

7 Evaluation of Pattern-based Architecture Evolution

In this section, we demonstrate the applicability of change patterns to evolve apeer-to-peer sys-
tem to a client-server architecture (in Section 7.1). We also evaluate the effects of the change
patterns on efficiency of the architecture evolution process (in Section 7.2).

7.1 Pattern-based Architecture Evolution

A high-level architectural view of the peer-to-peer appointment system(P2P-AS) [42] is pre-
sented in Figure 9. Architectural components and connectors are represented inside configura-
tions for modelling of P2P-AS system. The patterns presented in Section 6 (discovered from
the EBPP [34] and 3-in-1 Telephone System [35] case studies) are applied and cross-validated
to evolve a peer-to-peer architecture to a client-server architecture. Additional details about the
component-connector view of P2P-AS architecture are provided in [42].

5 The term’pattern intent’was first used in the GoF book to describe the primary objective of a
pattern. However, nowadays, it is also common among pattern authors/users to use terms like
pattern overview - pattern thumbnails or problem/solution-pairs.

Pattern Name and Parameters Pattern Intent Change Pattern Impact

Component Mediation Integrates
a mediator component (CM)
among two or more directly
connected components (C1, C2)

Component Mediation
 ([C

M
] < C

1
,C

M
,C

2
 >)

Functional Slicing
([C] < C1,C2 >)

Split a component (C) into two
or more components (C1,C2)
for functional decomposition of C.

Functional Unification
(C1,C2 > [C])

Merge two or more components
(C1,C2) into a single component
(C) for functional unification of
(C1,C2)

Active Displacement
(< C1 : C2 >,< C1 : C3 >

[C2 : C3])

Replace an existing component (C2)
with a new component (C3) while
maintaining the interconnection with
existing component (C1, C2).

Child Creation
([C1] < X1 : C1 >)

Create a child component (X1)
inside an atomic component
 (C1), C1 is a composite now.

Child Adoption
(< C1 : X1>,
< C2 : X1>)

Adopt a child component (X1)
from a composite component (C1)
to an atomic component (C2)

Child Swapping
([X1 : C1], [X2 : C2]

< X2 : C1 >,< X1 : C2 >)

Swap the child components (X1,X2)
 from composite components
(X1,X2) from composite

1

2

3

4

5

6

7

ConnectorComponent

Configuration

Pre
conditions

Post
conditions

Transformation

<<PRE>> <POST>>

C2C1

CM
x3x2

x2
C3

++
<<PRE>> <<POST>>

<<PRE>>

<<POST>>

X
1

C
1

X
2

C
2

X
2

C
1

X
1

C
2

C1

x1

C2

<<PRE>> <<POST>>

C

C
1 C

2

+ +

X

C

<<PRE>>

C1

C2

<<POST>>

C
1 C

2

X X

C+

C1

x1

C2

C1

x1

C2

C X1

C

<<PRE>> <<POST>>

+

<<PRE>> <<POST>>

X
1

C
1

C
2

X C
1 X

1

C
2

+

X

X

Change Operations

 - opr1: Add(CM : Component)
 - opr2: Add(X2 (CM, C1) : Connector)
 - opr3: Add(X3 (CM, X3) : Connector)
 - opr4: Rem(X1 (C1, C2) : Connector)

 - opr1: Add(C1 : Component)
 - opr2: Add(C2 : Component)
 - opr3: Rem(C : Component)

 - opr1: Rem(C1 : Component)
 - opr2: Rem(C2 : Component)
 - opr3: Add(C : Component)

 - opr1: Add(C3 : Component)
 - opr2: Rem(C2 : Component)
 - opr3: Add(X2 (C2, C3) : Connector)
 - opr2: Rem(X1 (C2, C1) : Connector)

 - opr1: Add(X1 : Component)
 - opr2: Mov(C(X1) : Component)

 - opr1: Rem(C1(X1) : Component)
 - opr2: Add(C2(X1) : Component)

 - opr1: Rem(C1(X1) : Component)
 - opr2: Add(C2(X1) : Component)
 - opr3: Rem(C2(X2) : Component)
 - opr4: Add(C1(X2) : Component)

Move (from : A, to : B)

A B+
X

Add (ARCH)

Remove(ARCH)

Figure 8: List of Discovered Architecture Change Patterns.

7.1.1 Source Architecture Model

The source architecture model of the P2P-AS system is presented in Figure 9 that consists of two
configurationsClient andAppointment Data. The Client configuration consists of an atomic
componentAppointment Client to request an appointment from the composite componentAp-
pointment Schedule in the Appointment Data configuration. TheAppointment Schedule
component is composed ofClient Authentication component. The connectorget Appointment
enables the component interconnection.

7.1.2 Evolution Scenarios, Change Primitives and Patterns

We have presented the evolution scenario in Figure 9 (extracted from the P2P-AS case study [42]).
We now provide a mapping of the evolution scenario (evolution problem) and the necessary
change primitives and change patterns (as available solutions) in Table 3.

1. Change Primitivesrepresent a collection of composite change operations to enable addition,
removal and modification of individual components and connectors (Section 3, cf. Change

Component ConnectorConfiguration

out in

ports

Appointment Server

Appointment Client

getAppointments getSchedules

Appointment Client

getAppointments getSchedules

Client
Authentication

Client
Registration

Client
Authentication

Appointments Schedule

Appointment Server

Source Architecture

Evolution Scenario 1 Evolution Scenario 2

Appointments Client

Client

getAppointment

Appointment Data

Appointment System

Client
Authentication

Appointments Schedule

Evolved Architecture

Server

Appointment System

Appointment Client

getAppointments getSchedules

Client
Authentication

Client
Registration

Appointment Server

Figure 9: Source and Evolved Architecture with Architecture Evolution Scenarios.

Operators). For example, in Evolution Scenario 1 (Table 3) change primitive requires at-least
a total of 4 change operations to integrate a mediator component in existing architecture.
We only consider changes on architectural components and connectors omitting changes on
ports and endpoints - it has already been explained that components must contain ports and
connectors must contain endpoints (Section 3, Architecture Model).

2. Change Patternsabstract the change primitives and provides a generic and reusable opera-
tionalisation to enable architecture evolution. In contrast to primitives, change patterns pro-
vide a process-based implementation of architecture evolution. A pattern captures a reusable
solution, its impact on architecture models (pattern pre/post conditions) and the necessary
operations to enable evolution (detailed in Section 6). For example in EvolutionScenario 1
(Table 3), theComponent Mediation pattern provides a reusable solution to primitives (ad
hoc once-off change operations). We consider the specification of pre-conditions, a pattern
and its post-conditions equivalent to a specification of 3 change operations.

7.1.3 Evolved Architecture Model

After the application of the change patterns to address the evolution scenarios, the evolved ar-
chitecture model is presented in Figure 9. The evolved architecture model consists of a new
configurationAppointment Server that is interposed betweenClient andAppointment Data.
In the evolved architecture model, the composite componentAppointment Server is used to
handle the client request for appointments.

Evolution Scenario 1
To interpose theAppointmentServer component between theAppointmentClients and
AppointmentSchedule components. The newly integrated Appointment Server component mediates
between the client requests and appointment scheduling.

Change Primitives
CS-AS architecture is modified with addition of a new componentAppointmentServer and two
connectors (getAppointment, getSchedule) to enable mediation between Clients and
Appointment components.
opr1 := ADD(AppointmentServer ∈ CMP)
opr2 := ADD(getAppointment((AppointmentClient,AppointmentServer) ∈ CMP) ∈ CON)
opr3 := ADD(getSchedule((AppointmentServer,AppointmentSchedule) ∈ CMP) ∈ CON)
opr4 := REM(getAppointment((AppointmentClient,AppointmentServer) ∈ CMP) ∈ CON)

Change Pattern
ComponentMediation([CM] < C1, CM , C2 >)

<<PRE>> <POST>>

C2C1

CM
x3x2

C1

x1

C2

To interpose a mediator component (CM) among two or more directly connected components (C1, C2).
Evolution Scenario 2

To create a child componentClientRegistration inside theAppointmentServer component. The
newly addedClient Registration component enables registration of individual clients on the server.

Change Primitives
CS-AS architecture is modified by creating theClientRegistration component (atomic component)
in Appointment Server (composite component) and a connector (register).
opr1 := ADD(ClientRegister ∈ CMP)
opr2 := ADD(register((ClientRegister, AppointmentClient) ∈ CMP) ∈ CON)

Change Pattern
ChildCreation([C] < X1 : C >)

C X1

C

<<PRE>> <<POST>>

+

To create a child component (X1) inside an atomic component (C).

Table 3: A Summary of Evolution Scenarios, Change Primitives and Change Patterns.

7.2 Efficiency of Pattern-based Evolution

After presenting evolution scenarios and patterns to address these scenarios, we discuss the results
of the evaluation. A summary of the evaluation results is presented in Table 4. In Table 4, we
compare the efficiency of change implementation using change primitivesand patterns with:

1. Total Change OperationsTo quantify the required efforts for change implementation, we
count the number of change operators required for implementing a change and call this
Total Change Operations (TCO). TCO is defined asthe total number of architecture change
operations required to resolve an architecture evolution scenario.For example, in Table 4
the TCO value for component integration is 4.

2. Ratio of Change Operationalisation (Primitive vs Pattern)Represents the ratio of change

operators from pattern to primitive changes expressed as:1− (
N

TCO

E
TCO

). NTCO denotes the

number of change operations required by the patterns (N),ETCO denotes the number of
change operations required by the primitive (E). For an example, see Table 4,

Change Pattern Change Primitive Efficiency Comparison
Pattern Name TCO Intent of Primitive TCONTCO/ETCO

Component Mediation1 Integration of Components 4 25
Parallel Mediation 1 Integration of Components 3 33
Correlated Mediation1 Integration of Components 8 12.5
Functional Slicing 1 Splitting of Components 3 33
Functional Unification1 Merging of Components 3 33
Active Displacement 1 Replacement of Components4 25
Child Creation 1 Composition of Components4 25
Child Adoption 1 Move a Component 4 25
Child Swap 1 Swap a Component 4 25

1 4.11 26%

Table 4: A Summary of Efforts for Change Primitives and Change Patterns.

Based on the summary of results in Table 4 we provide an overview of the comparative analy-
sis for TCO for primitive and pattern-based changes. In contrast to patterns, primitive changes
require between 3 and 8 change operations to implement a particular change. In addition, pattern-
based changes provide a process-based overview of change implementation. The results suggest
that:

Pattern-based changes take only 29% of change operations comparedto primitive changes.
However, pattern-based change does not support a fine-granularchange representation.

The loss of granularity results in:

1. Change Implementation at Higher Abstraction -patterns with reusable but coarse-grained
changes only provide generic changes that affect components and connectors. This abstrac-
tion do not support lower level changes changes at the component operations level, that are
exposed at ports. In contrast, the change primitives supported with atomic and composite ar-
chitectural changes support a fine granular change representation.The granularity of change
implementation is a concern of source code changes [36] and not the architecture evolution.

2. Structural Integrity of Architecture Model -the granularity of architectural changes ensure
that architectural integrity is preserved (components and their port, connectors have bind-
ings). In our solution, architectural hierarchy is preserved with chnage operations that are
abstracted in patterns.

8 Conclusions and Future Research

In this paper, we investigated architecture change logs - performing a post-mortem analysis of ar-
chitectural evolution histories - to discover change patterns. In the context of architectural knowl-
edge, the discovered patterns represent reusable knowledge and expertise that can be empirically
discovered and reused to promote the notion of evolution-off-the-shelfin software architectures.
The novelty of this research is a three-step process for evolution reusethat involves (a)pattern
discovery, (b) pattern specification, and (c)pattern instantiation. To automate the pattern dis-
covery process from change logs, we model the change log data as a graph and exploit graph

mining for change pattern discovery. Once the patterns are discovered, we provide a template-
based specification to facilitate pattern documentation and its future reuse. Finally, we illustrate
how pattern-based architecture evolution increases the efficiency of thearchitecture evolution
processes and promote reusable change implementation.

Dimensions for Future Researchinclude the evaluation of pattern discovery algorithms and
pattern based reusability with more case studies. We need log data from different case studies as
the developed algorithms can facilitate automated log mining to discover new patterns. The newly
discovered patterns are assumed to support the composition and application of achange pattern
languageto support architecture evolution reuse. A pattern language provides a pattern collec-
tion such that the patterns in the language are formalised and interconnected. This means change
patterns from the language could be selected and applied in a sequential fashion to support an
incremental evolution. By incremental evolution we mean decomposing architectural evolution
into a manageable set of evolution scenarios that could be addressed in astep-wise manner. An-
other interesting dimension is the possible identification and resolution ofchange anti-patterns.
Change anti-patterns represent counter-productive and negative impacts of patterns on architec-
ture models that can be mitigated to enhance the quality of architecture evolution.

References

1. T. Mens and S. Demeyer,Software Evolution, 1st ed. Springer: Berlin Heidelberg, 2008.

2. K. H. Bennett and V. T. Rajlich, “Software Maintenance and Evolution:A Roadmap,” in
Conference on the Future of Software Engineering. ACM, 2000, pp. 73–87.

3. M. M. Lehman and J. F. Ramil, “Software Evolution: Background, Theory, Practice,”Infor-
mation Processing Letters, vol. 88, no. 1, pp. 33–44, 2003.

4. S. Lehnert, Q. Farooq, and M. Riebisch, “A Taxonomy of Change Types and its Application
in Software Evolution,” in19th International Conference and Workshops on Engineering of
Computer Based Systems. IEEE, 2012, pp. 98–107.

5. A. Ahmad, P. Jamshidi, and C. Pahl, “Graph-based Pattern Identification from Architec-
ture Change Logs,” inIn Tenth International Workshop on System/Software Architecture.
Springer, 2012, pp. 200–213.

6. H. P. Breivold, I. Crnkovic, and M. Larsson, “A Systematic Reviewof Software Architec-
ture Evolution Research,”Information and Software Technology, vol. 54, no. 1, pp. 16–40,
2012.

7. D. Garlan, J. M. Barnes, B. Schmerl, and O. Celiku, “Evolution Styles: Foundations and
Tool Support for Software Architecture Evolution,” inJoint Working IEEE/IFIP Conference
on Software Architecture, 2009 and European Conference on Software Architecture. WIC-
SA/ECSA. IEEE, 2009, pp. 131–140.

8. P. Jamshidi, M. Ghafari, A. Aakash, and C. Pahl, “A Framework for Classifying and Com-
paring Architecture-centric Software Evolution Research,” in17th European Conference on
Software Maintenance and Reengineering (CSMR’13). IEEE, 2013, pp. 305–314.

9. A. Ahmad, P. Jamshidi, and C. Pahl, “Classification and Comparison of Architecture
Evolution-Reuse Knowledge - A Systematic Review,” inJournal of Software: Evolution and
Process. DOI: 10.1002/smr.1643. Wiley, 2014.

10. J. Ćamara, P. Correia, R. De Lemos, D. Garlan, P. Gomes, B. Schmerl, and R. Ventura,
“Evolving an Adaptive Industrial Software System to Use Architecture-based Self-
adaptation,” in8th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems. IEEE, 2013, pp. 13–22.

11. O. Le Goaer, D. Tamzalit, M. Oussalah, and A.-D. Seriai, “EvolutionShelf: Reusing Evo-
lution Expertise Within Component-based Software Architectures,” in32nd Annual IEEE
International Computer Software and Applications, 2008. COMPSAC’08. IEEE, 2008, pp.
311–318.

12. K. Yskout, R. Scandariato, and W. Joosen, “Change patterns: Co-evolving Requirements
and Architecture,”Journal of Software and Systems Modeling. DOI 10.1007/s10270-012-
0276-6, pp. 1–24, 2012.

13. H. Kagdi, M. L. Collard, and J. I. Maletic, “A Survey and Taxonomyof Approaches for
Mining Software Repositories in the Context of Software Evolution,”Journal of Software
Maintenance and Evolution: Research and Practice, vol. 19, no. 2, pp. 77–131, 2007.

14. T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining Version Histories to
Guide Software Changes,”IEEE Transactions on Software Engineering, vol. 31, no. 6, pp.
429–445, 2005.

15. R. Agrawal and R. Srikant, “Mining Sequential Patterns,” inIn Eleventh International Con-
ference on Data Engineering, (ICDE’95). IEEE, 1995, pp. 3–14.

16. J. M. Barnes and D. Garlan, “Challenges in Developing a Software Architecture Evolution
Tool as a Plug-Ins,” inProceedings of the 3rd Workshop on Developing Tools as Plugin-Ins
(TOPI13), 2013, pp. 13–18.

17. C. Jiang, F. Coenen, and M. Zito, “A Survey of Frequent Subgraph Mining Algorithms,”
The Knowledge Engineering Review, vol. 1, no. 1, pp. 1–31, 2012.

18. N. B. Harrison, P. Avgeriou, and U. Zdlin, “Using Patterns to Capture Architectural Deci-
sions,”IEEE Software, vol. 24, no. 4, pp. 38–45, 2007.

19. X. Dong and M. W. Godfrey, “Identifying Architectural Change Patterns in Object-oriented
Systems,” inThe 16th IEEE International Conference on Program Comprehension. IEEE,
2008, pp. 33–42.

20. S. Bouktif, Y.-G. Gueheneuc, and G. Antoniol, “Extracting Change-patterns from CVS
Repositories,” inProceedings of the 13th Working Conference on Reverse Engineering.
IEEE Computer Society, 2006, pp. 221–230.

21. B. G. H. Tong, C. Faloutsos and T. Eliassi-Rad, “Fast Best-Effort Pattern Matching in Large
Attributed Graphs,” in13th ACM International Conference on Knowledge Discovery and
Data Mining, 2007.

22. M. Javed, Y. M. Abgaz, and C. Pahl, “Graph-based Discovery of Ontology Change Pat-
terns,” inJoint Workshop on Knowledge Evolution and Ontology Dynamics. CEUR Work-
shop Proceeding, 2011, pp. 309–318.

23. L. P. V. H. Babar MA, Dingsyr T,Software Architecture Knowledge Management: Theory
and Practice. Springer Heidelberg, 2009.

24. E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns: Abstraction and Reuse
of Object-oriented Design. Springer-Verlag LNCS, 1993.

25. N. R. Mehta and N. Medvidovic, “Composing Architectural Styles from Architectural Prim-
itives,” in 9th European Software Engineering Conference held jointly with 11th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, vol. 28, no. 5.
ACM, 2003, pp. 347–350.

26. A. Ahmad, P. Jamshidi, and C. Pahl, “Graph-based Discovery ofArchitecture Change
Patterns from Logs,”Technical Report: School of Computing, Dublin City University, 2013.
[Online]. Available: www.computing.dcu.ie\/∼pjamshidi/PatternDiscovery.pdf

27. L. Yu, “Mining Change Logs and Release Notes to Understand Software Maintenance and
Evolution,” CLEI Electron Journal, vol. 12, no. 2, pp. 1–10, 2009.

28. P. Mohagheghi and R. Conradi, “An Empirical Study of Software Change: Origin, Accep-
tance rate, and Functionality vs. Quality Attributes,” innternational Symposium on Empirical
Software Engineering, ISESE’04. IEEE, 2004, pp. 7–16.

29. V. Clerc, P. Lago, and H. van Vliet, “The Architect Mindset,” inSoftware Architectures,
Components, and Applications. Springer, 2007, pp. 231–249.

30. A. Ahmad, P. Jamshidi, M. Arshad, and C. Pahl, “Graph-based Implicit Knowledge Dis-
covery from Architecture Change Logs,” inIn Seventh Workshop on SHaring and Reusing
Architecture Knowledge. ACM, 2012, pp. 116–123.

31. N. Medvidovic and R. N. Taylor, “A Classification and Comparison Framework for Soft-
ware Architecture Description Languages,”IEEE Transactions on Software Engineering,
vol. 26, no. 1, pp. 70–93, 2000.

32. A. Ahmad and C. Pahl, “Pat-Evol: Pattern-drive Reuse in Architecture-based Evolution for
Service Software,” vol. 88. ERCIM News, 2012, pp. 200–213.

33. N. Lassing, D. Rijsenbrij, and H. van Vliet, “How Well can We Predict Changes at Archi-
tecture Design Time?”Journal of Systems and Software, vol. 65, no. 2, pp. 141–153, 2003.

34. EBPPCaseStudy, “Nacha - the electronic bill presentment and payment.” [Online].
Available: www.nacha.org

35. 3-in-1 Phone System, “K3: Cordless Telephony Profile,”Bluetooth Specification Version,
vol. 1, 1999.

36. B. J. Williams and J. C. Carver, “Characterizing Software Architecture Changes: A System-
atic Review,”Information and Software Technology, vol. 52, no. 1, pp. 31–51, 2010.

37. P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet, “Architecture-Level Modifiability
Analysis (ALMA),” Journal of Systems and Software, vol. 69, no. 1, pp. 129–147, 2004.

38. H. Ehrig, U. Prange, and G. Taentzer,Fundamental theory for typed attributed graph trans-
formation. Lecture Notes in Computer Science, Springer-Verlag, 2004.

39. U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Marshall, “GraphML
Progress Report - Structural Layer Proposal,” inGraph Drawing. Springer, 2002, pp. 501–
512.

40. D. W. Brandes Ulrick, M. Gaertler, “Experiments on Graph Clustering Algorithms,” in11th
Annual European Symposium on Algorithms. Lecture Notes in Computer Science, 2007.

41. P. Clements, D. Garlan, R. Little, R. Nord, and J. Stafford, “Documenting Software Archi-
tectures: Views and Beyond,” in25th International Conference on Software Engineering,
2003. IEEE, 2003, pp. 740–741.

42. N. S. Rosa, P. R. F. Cunha, and G. R. R. Justo, “An Approach for Reasoning and Refining
Non-functional Requirements,”Journal of the Brazilian Computer Society, vol. 10, no. 1,
pp. 59–81, 2004.

www.computing.dcu.ie\/~pjamshidi/PatternDiscovery.pdf
www.nacha.org

	Introduction
	Related Work
	Change Pattern Discovery
	Change Pattern Application
	Industrial Research on Implications of Reuse on Architecture Evolution

	A Meta-model of Pattern-based Architecture Evolution
	Graph-based Modelling of the Architecture Change Log Data
	The Source and Types of Change Log Data
	Evolution Case Studies as the Source of Change Log Data
	Types of Data in a Change Log

	Creating the Change Log Graph
	Mapping the Change Log Data to Change Log Graph

	Graph-based Discovery of Architecture Change Patterns
	Algorithm I - Candidate Generation
	Algorithm II - Candidate Validation
	Algorithm III - Candidate Pattern Matching
	Overview of Prototype for Pattern Discovery

	A Template-based Specification of Discovered Change Patterns
	Specification of the Architecture Change Patterns
	Overview of the Discovered Change Patterns

	Evaluation of Pattern-based Architecture Evolution
	Pattern-based Architecture Evolution
	Source Architecture Model
	Evolution Scenarios, Change Primitives and Patterns
	Evolved Architecture Model

	Efficiency of Pattern-based Evolution

	Conclusions and Future Research

